# NOT RUN {
# Alloy T7987 dataset taken from Meeker and Escobar(1998, p. 131)
cycles <- c(300, 300, 300, 300, 300, 291, 274, 271, 269, 257, 256, 227, 226,
224, 213, 211, 205, 203, 197, 196, 190, 189, 188, 187, 184, 180,
180, 177, 176, 173, 172, 171, 170, 170, 169, 168, 168, 162, 159,
159, 159, 159, 152, 152, 149, 149, 144, 143, 141, 141, 140, 139,
139, 136, 135, 133, 131, 129, 123, 121, 121, 118, 117, 117, 114,
112, 108, 104, 99, 99, 96, 94)
state <- c(rep(0, 5), rep(1, 67))
id <- 1:length(cycles)
df_john <- johnson_method(x = cycles, event = state, id = id)
# Example 1: Probability Plot and Regression Line Three-Parameter-Weibull:
plot_weibull <- plot_prob(x = df_john$characteristic,
y = df_john$prob,
event = df_john$status,
id = df_john$id,
distribution = "weibull",
title_main = "Three-Parametric Weibull",
title_x = "Cycles",
title_y = "Probability of Failure in %",
title_trace = "Failed Items")
mrr <- rank_regression(x = df_john$characteristic,
y = df_john$prob,
event = df_john$status,
distribution = "weibull3",
conf_level = .90)
plot_reg_weibull <- plot_mod(p_obj = plot_weibull, x = cycles,
loc_sc_params = mrr$loc_sc_coefficients,
distribution = "weibull3",
title_trace = "Estimated Weibull CDF")
# Example 2: Probability Plot and Regression Line Three-Parameter-Lognormal:
plot_lognormal <- plot_prob(x = df_john$characteristic,
y = df_john$prob,
event = df_john$status,
id = df_john$id,
distribution = "lognormal",
title_main = "Three-Parametric Lognormal",
title_x = "Cycles",
title_y = "Probability of Failure in %",
title_trace = "Failed Items")
mrr_ln <- rank_regression(x = df_john$characteristic,
y = df_john$prob,
event = df_john$status,
distribution = "lognormal3",
conf_level = .90)
plot_reg_lognormal <- plot_mod(p_obj = plot_lognormal, x = cycles,
loc_sc_params = mrr_ln$loc_sc_coefficients,
distribution = "lognormal3",
title_trace = "Estimated Lognormal CDF")
# }
Run the code above in your browser using DataLab