# Example 1 - MCS for delay in registration:
mcs_regist <- mcs_delay(
date_1 = field_data$production_date,
date_2 = field_data$registration_date,
time = field_data$dis,
status = field_data$status,
distribution = "lognormal"
)
# Example 2 - MCS for delay in report:
mcs_report <- mcs_delay(
date_1 = field_data$repair_date,
date_2 = field_data$report_date,
time = field_data$dis,
status = field_data$status,
distribution = "exponential"
)
# Example 3 - Reproducibility of random numbers:
set.seed(1234)
mcs_report_reproduce <- mcs_delay(
date_1 = field_data$repair_date,
date_2 = field_data$report_date,
time = field_data$dis,
status = field_data$status,
distribution = "exponential"
)
# Example 4 - MCS for delays in registration and report with same distribution:
mcs_delays <- mcs_delay(
date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
time = field_data$dis,
status = field_data$status,
distribution = "lognormal"
)
# Example 5 - MCS for delays in registration and report with different distributions:
## Assuming lognormal registration and exponential reporting delays.
mcs_delays_2 <- mcs_delay(
date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
time = field_data$dis,
status = field_data$status,
distribution = c("lognormal", "exponential")
)
Run the code above in your browser using DataLab