# Vectors:
## Data for mixture model:
hours <- voltage$hours
status <- voltage$status
## Data for simple unimodal distribution:
distance <- shock$distance
status_2 <- shock$status
# Probability estimation with one method:
prob_mix <- estimate_cdf(
x = hours,
status = status,
method = "johnson"
)
prob <- estimate_cdf(
x = distance,
status = status_2,
method = "johnson"
)
# Example 1 - Mixture identification using k = 2 two-parametric Weibull models:
mix_mod_weibull <- mixmod_regression(
x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "weibull",
conf_level = 0.99,
k = 2
)
# Example 2 - Mixture identification using k = 3 two-parametric lognormal models:
mix_mod_lognorm <- mixmod_regression(
x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "lognormal",
k = 3
)
# Example 3 - Mixture identification using control argument:
mix_mod_control <- mixmod_regression(
x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "weibull",
k = 2,
control = segmented::seg.control(display = TRUE)
)
# Example 4 - Mixture identification performs rank_regression for k = 1:
mod <- mixmod_regression(
x = prob$x,
y = prob$prob,
status = prob$status,
distribution = "weibull",
k = 1
)
Run the code above in your browser using DataLab