# Vectors:
cycles <- alloy$cycles
status <- alloy$status
# Probability estimation
prob_tbl <- estimate_cdf(x = cycles, status = status, method = "johnson")
# Example 1: Probability Plot and Regression Line Three-Parameter-Weibull:
plot_weibull <- plot_prob(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "weibull"
)
rr <- rank_regression(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "weibull3"
)
plot_reg_weibull <- plot_mod(
p_obj = plot_weibull,
x = prob_tbl$x,
dist_params = rr$coefficients,
distribution = "weibull3"
)
# Example 2: Probability Plot and Regression Line Three-Parameter-Lognormal:
plot_lognormal <- plot_prob(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "lognormal"
)
rr_ln <- rank_regression(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "lognormal3"
)
plot_reg_lognormal <- plot_mod(
p_obj = plot_lognormal,
x = prob_tbl$x,
dist_params = rr_ln$coefficients,
distribution = "lognormal3"
)
## Mixture Identification
# Vectors:
hours <- voltage$hours
status <- voltage$status
# Probability estimation:
prob_mix <- estimate_cdf(
x = hours,
status = status,
method = "johnson"
)
Run the code above in your browser using DataLab