
The discrete wavelet transform using convolution style filtering and periodic extension.
Let
wavDWT(x, n.levels=ilogb(length(x), base=2),
wavelet="s8", position=list(from=1,by=1,units=character()), units=character(),
title.data=character(), documentation=character(), keep.series=FALSE)
a vector containing a uniformly-sampled real-valued time series.
a character string used to describe the input
data
. Default: character()
.
a logical value. If TRUE
, the original series
is preserved in the output object. Default: FALSE
.
the number of decomposition levels.
Default: as.integer(floor(logb(length(x),base=2)))
.
a list
containing the arguments
from, by
and to
which describe the position(s) of the input
data
. All position arguments need not be specified as missing members
will be filled in by their default values. Default: list(from=1, by=1, units=character())
.
a character string representing the name of the input
data
. Default: character()
.
a string denoting the units of the time series. Default: character()
(no units).
a character string denoting the filter type.
See wavDaubechies
for details. Default: "s8"
.
an object of class wavTransform
.
This DWT imposes an ad hoc storage sytem for odd length scaling coefficient crystals: if the length of a scaling coefficient crystal is odd, the last coefficient is "stored" in the extra crystal. During reconstruction, any extra scaling coefficients are returned to their proper location. Such as system imposes no spurious energy in the transform coefficients at the cost of a little bookkeeping.
D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press, 2000.
reconstruct
, wavDaubechies
, wavMODWT
, wavMODWPT
, wavMRD
, wavDictionary
, wavIndex
, wavTitle
, wavBoundary
, wavShrink
.
# NOT RUN {
## calculate the DWT of linear chirp
linchirp <- make.signal("linchirp", n=1024)
result <- wavDWT(linchirp, wavelet="s8", n.levels=5, keep.series=TRUE)
## plot the transform shifted for approximate zero
## phase alignment
plot(wavShift(result))
## plot summary
eda.plot(result)
## summarize the transform
summary(result)
# }
Run the code above in your browser using DataLab