This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset. Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.
As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
identify_inactiveweeks(data, sd = 2, return = "text")
Returns an error message by default, where 'text'
is returned. When
'data_cleaned'
is passed, a dataset with outlier weeks removed is returned
as a dataframe. When 'data_dirty'
is passed, a dataset with outlier weeks
is returned as a dataframe.
A Standard Person Query dataset in the form of a data frame.
The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
String specifying what to return. This must be one of the following strings:
"text"
"data_cleaned"
"data_dirty"
See Value
for more information.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count_all()
,
hrvar_count()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts_wp()
,
identify_shifts()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate_report()
,
subject_validate()
,
track_HR_change()
,
validation_report()