Learn R Programming

wpa (version 1.9.0)

identify_shifts: Identify shifts based on outlook time settings for work day start and end time

Description

This function uses outlook calendar settings for start and end time of work day to identify work shifts. The relevant variables are WorkingStartTimeSetInOutlook and WorkingEndTimeSetInOutlook.

Usage

identify_shifts(data, return = "plot")

Value

A different output is returned depending on the value passed to the return

argument:

  • "plot": ggplot object. A bar plot for the weekly count of shifts.

  • "table": data frame. A summary table for the count of shifts.

  • "data: data frame. Input data appended with the Shifts columns.

Arguments

data

A data frame containing data from the Hourly Collaboration query.

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

  • "data"

See Value for more information.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Other Working Patterns: flex_index(), identify_shifts_wp(), plot_flex_index(), workpatterns_area(), workpatterns_classify_bw(), workpatterns_classify_pav(), workpatterns_classify(), workpatterns_hclust(), workpatterns_rank(), workpatterns_report()

Examples

Run this code
# Return plot
dv_data %>% identify_shifts()

# Return summary table
dv_data %>% identify_shifts(return = "table")

Run the code above in your browser using DataLab