Learn R Programming

wpa (version 1.9.0)

meeting_quality: Run a meeting habits / meeting quality analysis

Description

Return an analysis of Meeting Quality with a bubble plot, using a Standard Person Query as an input.

Usage

meeting_quality(
  data,
  hrvar = "Organization",
  metric_x = "Low_quality_meeting_hours",
  mingroup = 5,
  return = "plot"
)

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A bubble plot for the metric.

  • "table": data frame. A summary table for the metric.

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"

metric_x

String specifying which variable to show in the x-axis when returning a plot. Must be one of the following:

  • "Low_quality_meeting_hours" (default)

  • "After_hours_meeting_hours"

  • "Conflicting_meeting_hours"

  • "Multitasking_meeting_hours"

  • Any meeting hour variable that can be divided by Meeting_hours

If the provided metric name is not found in the data, the function will use the first matched metric from the above list.

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings: - "plot" - "table"

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

Run this code
# Return plot
meeting_quality(sq_data, return = "plot")

# Return plot - showing multi-tasking %
# \donttest{
meeting_quality(sq_data,
                metric_x = "Multitasking_meeting_hours",
                return = "plot")
# }

# Return summary table
# \donttest{
meeting_quality(sq_data, return = "table")
# }

Run the code above in your browser using DataLab