# NOT RUN {
# example 1: temporal exponential random graph model (see ?btergm)
library("statnet")
set.seed(5)
networks <- list()
for(i in 1:10){ # create 10 random networks with 10 actors
mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- 0 # loops are excluded
nw <- network(mat) # create network object
networks[[i]] <- nw # add network to the list
}
covariates <- list()
for (i in 1:10) { # create 10 matrices as covariate
mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat # add matrix to the list
}
fit <- btergm(networks ~ edges + istar(2) +
edgecov(covariates), R = 100)
summary(fit) # show estimation results
# example 2: temporal network autocorrelation model (see ?tnam)
data("knecht")
delinquency <- as.data.frame(delinquency)
rownames(delinquency) <- letters
friendship[[3]][friendship[[3]] == 10] <- NA
friendship[[4]][friendship[[4]] == 10] <- NA
for (i in 1:length(friendship)) {
rownames(friendship[[i]]) <- letters
}
sex <- demographics$sex
names(sex) <- letters
sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
religion <- demographics$religion
names(religion) <- letters
religion <- list(t1 = religion, t2 = religion, t3 = religion,
t4 = religion)
model1 <- tnam(
delinquency ~
covariate(sex, coefname = "sex") +
covariate(religion, coefname = "religion") +
covariate(delinquency, lag = 1, exponent = 1) +
netlag(delinquency, friendship) +
netlag(delinquency, friendship, pathdist = 2, decay = 1) +
netlag(delinquency, friendship, lag = 1) +
degreedummy(friendship, deg = 0, reverse = TRUE) +
centrality(friendship, type = "betweenness"),
re.node = TRUE, time.linear = TRUE
)
summary(model1)
# }
Run the code above in your browser using DataLab