# NOT RUN {
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label))
dtest <- with(agaricus.test, xgb.DMatrix(data, label = label))
param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic')
nrounds = 4
bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
# Model accuracy without new features
accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) /
length(agaricus.test$label)
# Convert previous features to one hot encoding
new.features.train <- xgb.create.features(model = bst, agaricus.train$data)
new.features.test <- xgb.create.features(model = bst, agaricus.test$data)
# learning with new features
new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label)
new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label)
watchlist <- list(train = new.dtrain)
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
# Model accuracy with new features
accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) /
length(agaricus.test$label)
# Here the accuracy was already good and is now perfect.
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now",
accuracy.after, "!\n"))
# }
Run the code above in your browser using DataLab