#### Binary classification:
## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)
# In the iris dataset, it is hard to linearly separate Versicolor class from the rest
# without considering the 2nd order interactions:
x <- model.matrix(Species ~ .^2, iris)[,-1]
colnames(x)
dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = nthread)
param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",
lambda = 0.0003, alpha = 0.0003, nthread = nthread)
# For 'shotgun', which is a default linear updater, using high eta values may result in
# unstable behaviour in some datasets. With this simple dataset, however, the high learning
# rate does not break the convergence, but allows us to illustrate the typical pattern of
# "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,
callbacks = list(cb.gblinear.history()))
# Extract the coefficients' path and plot them vs boosting iteration number:
coef_path <- xgb.gblinear.history(bst)
matplot(coef_path, type = 'l')
# With the deterministic coordinate descent updater, it is safer to use higher learning rates.
# Will try the classical componentwise boosting which selects a single best feature per round:
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,
updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
callbacks = list(cb.gblinear.history()))
matplot(xgb.gblinear.history(bst), type = 'l')
# Componentwise boosting is known to have similar effect to Lasso regularization.
# Try experimenting with various values of top_k, eta, nrounds,
# as well as different feature_selectors.
# For xgb.cv:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,
callbacks = list(cb.gblinear.history()))
# coefficients in the CV fold #3
matplot(xgb.gblinear.history(bst)[[3]], type = 'l')
#### Multiclass classification:
#
dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
lambda = 0.0003, alpha = 0.0003, nthread = nthread)
# For the default linear updater 'shotgun' it sometimes is helpful
# to use smaller eta to reduce instability
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 70, eta = 0.5,
callbacks = list(cb.gblinear.history()))
# Will plot the coefficient paths separately for each class:
matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')
# CV:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,
callbacks = list(cb.gblinear.history(FALSE)))
# 1st fold of 1st class
matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')
Run the code above in your browser using DataLab