Learn R Programming

xxIRT (version 2.0.0)

ata: Automated Test Assembly (ATA)

Description

ata creates an ata object

ata.get.forms is a helper function for converting input forms into actual form indeces in LP

ata.obj.coefficients is a helper function for processesing the input coefficients

ata.obj.relative adds relative (maximize/minimize) objectives to LP

ata.obj.absolute adds absolute objectives to LP

ata.constraint adds a constraint to LP

ata.item.maxselect sets the maximal times of selection for items

ata.item.enemy adds enemy item relationship to LP

ata.fixitem set a fixed value for items, e.g, 1 for selection and 0 for no selection

ata.solve solves the LP

ata.get.items extracts items using assembly results

Usage

ata(pool, nform = 1, len = NULL, maxselect = NULL, debug = FALSE)
"print"(x, ...)
"plot"(x, ...)
ata.get.forms(x, forms, collapse)
ata.obj.coefficients(x, coef, compensate)
ata.obj.relative(x, coef, mode, negative = FALSE, flatten = NULL, compensate = FALSE, forms = NULL, collapse = FALSE)
ata.obj.absolute(x, coef, target, compensate = FALSE, forms = NULL, collapse = FALSE)
ata.constraint(x, coef, min = NA, max = NA, level = NULL, forms = NULL, collapse = FALSE)
ata.item.maxselect(x, maxselect, items = NULL)
ata.item.enemy(x, items)
ata.item.fix(x, items, min, max, forms = NULL, collapse = FALSE)
ata.solve(x, ...)
ata.get.items(x, as.list = FALSE)

Arguments

pool
a data frame of items
nform
the number of forms to be assembled
len
the test length
maxselect
the maximal times of selection of an item
debug
TRUE to turn on debug mode
x
the ata object
...
further arguments
forms
the forms to which objectives are added. NULL for all forms
collapse
TRUE to collapse all forms into one objective
coef
the coefficients added to the LP
compensate
TRUE when objective functions are compensatory to one another
mode
the optimzation mode (i.e. 'max' for maximization or 'min' for minimization)
negative
TRUE when the expected value of the objective function is negative
flatten
the flatten parameter
target
the targeted value of the objective function
min
the minimum value of the constraint
max
the maximum value of the constraint
level
the level value for categorical variable
items
a vector of item index
as.list
TRUE to return a list, FALSE to return a data frame

Value

ata returns an ata object

Details

An ata object contains an item pool (pool), a LP object (lp), and several constants such as the number of forms (nform), the size of item pool(nitem), the size of LP object (nlpitem), etc. It would contain assembly results (result) if LP has been solved. The result is a data frame of binary code with 1 indicating selected (items in rows and forms in columns). Use ata.get.items to extract actual items from results.

For the function ata.obj.relative and ata.obj.absolute, when coef is a pool-size numeric vector, coefficients are used directly. When coef is a variable name in the pool, values of that variable are used as coefficients. When coef is a numeric vector which is unequal to pool size, information at those theta points are used as coefficients. When the expected value of the objective function is negative, set the negative argument to TRUE. The compensate argument controls whether objective functions are compensatory. For example, the ATA job wants to maximize information at -0.5 and 0.5. When compensate is TRUE, the LP assembles a test maximizing the sum of information at -0.5 and 0.5. When compensate is FALSE, the LP assembles a test maximizing information at each point, but not necessarily a maxmized total. ata.obj.relative is to maximize or minimize the objectives. There are four scenarios. (1) For a maximization job with postive expected value, maximize y while sum(x) - y >= 0 and <= f="" (flatten).="" (2)="" for="" a="" maximization="" job="" with="" negative="" expected="" value,="" minimize="" y="" while="" sum(x)="" +="">= 0 and <= f.="" (3)="" for="" a="" minimization="" job="" with="" postive="" expected="" value,="" minimize="" y="" while="" sum(x)="" +="" <="0" and="">= F. (4) For a minimization job with negative expected value, maximize y while sum(x) - y <= 0="" and="">= F.

ata.obj.absolute minimizes y while sum(x) + y >= target and sum(x) - y <= target.="" <="" p="">

For ata.constraint, set coef to a variable name in the pool and level a level value of that variable to add a categorical constraint. Set coef to a variable name and leave level to default value (NULL or NA) to add a quantitative constraint. Set coef to a number or a vector to directly add a constraint.

In ata.solve, the ... are additional lp.control.options. The result (x$result) is a data frame of binary code with 1 indicating selected (items in rows and forms in columns). Use ata.get.items to extract actual items.

Examples

Run this code
## Not run: 
# # ex. 1: 2 forms, 10 items, maximize b parmaters
# items <- irt.model(model="3pl")$gen.data(1, 100)$items
# items$content <- sample(1:3, nrow(items), replace=TRUE)
# items$time <- round(rlnorm(nrow(items), log(60), .2), 0)
# x <- ata(items, 2, debug=TRUE)
# x <- ata.obj.relative(x, "b", "max")
# x <- ata.constraint(x, 1, 10, 10)
# x <- ata.item.maxselect(x, 1)
# x <- ata.solve(x)
# plot(x)
# y <- ata.get.items(x, as.list=TRUE)
# mean(y[[1]]$b)
# mean(y[[2]]$b)
# # ex. 2: 2 forms, 10 items, minimize b parmaeters
# x <- ata(items, 2, len=10, maxselect=1, debug=TRUE)
# x <- ata.obj.relative(x, "b", "min", negative=TRUE)
# x <- ata.solve(x)
# plot(x)
# y <- ata.get.items(x, as.list=TRUE)
# mean(y[[1]]$b)
# mean(y[[2]]$b)
# # ex. 3: 2 forms, 10 items, maximize information at -0.5 and 0.5
# # content distribution: 3, 3, 4; response time: avg. 55--65s
# x <- ata(items, 2, len=10, maxselect=1, debug=TRUE)
# x <- ata.obj.relative(x, c(-0.5, 0.5), "max")
# x <- ata.constraint(x, "content", 3, 3, 1)
# x <- ata.constraint(x, "content", 3, 3, 2)
# x <- ata.constraint(x, "content", 4, 4, 3)
# x <- ata.constraint(x, "time", 55*10, 65*10)
# x <- ata.solve(x)
# plot(x)
# y <- ata.get.items(x, TRUE)
# freq(y[[1]]$content, 1:3)$n
# mean(y[[1]]$time)
# freq(y[[2]]$content, 1:3)$n
# mean(y[[2]]$time)
# # ex. 4: 2 forms, 10 items, mean(b) = 0.5, sd(b) = 1.0, content = (3, 3, 4)
# x <- ata(items, 2, len=10, maxselect=1, debug=TRUE)
# x <- ata.obj.absolute(x, "b", 0.5 * 10)
# x <- ata.obj.absolute(x, (x$pool$b - 0.5)^2, 1.0 * 10)
# x <- ata.constraint(x, "content", 3, 3, 1)
# x <- ata.constraint(x, "content", 3, 3, 2)
# x <- ata.constraint(x, "content", 4, 4, 3)
# x <- ata.solve(x)
# plot(x)
# y <- ata.get.items(x, TRUE)
# c(mean(y[[1]]$b), sd(y[[1]]$b))
# freq(y[[1]]$content, 1:3)$n
# c(mean(y[[2]]$b), sd(y[[2]]$b))
# freq(y[[2]]$content, 1:3)$n
# # ex. 5: 2 forms, 10 items, flat TIF over [-1, 1]
# x <- ata(items, 2, len=10, maxselect=1, debug=TRUE)
# x <- ata.obj.relative(x, seq(-1, 1, .5), "max", negative=FALSE, flatten=.1)
# x <- ata.solve(x)
# y <- ata.get.items(x, TRUE)
# plot(irt.model.3pl(items=y[[1]]), stats="information", total=TRUE)
# plot(irt.model.3pl(items=y[[2]]), stats="information", total=TRUE)
# ## End(Not run)

Run the code above in your browser using DataLab