Learn R Programming

xxIRT (version 2.0.0)

estimate.items: Estimation of Item Parameters

Description

estimate.items is a wrapper function for estimating item parameters

estimate.items.3pl.jmle calibrates item parameters with knwon thetas using joint maximum likelihood.

estimate.items.3pl.mmle calibrates item parameters without knowing people parameters using marginal maximum likelihood.

estimate.items.3pl.bme calibrates item parameters without knowing people parameters using bayesian maximum likelihood.

Usage

estimate.items(responses, model = "3pl", method = "jmle", ...)
estimate.items.3pl.jmle(responses, people, fix = list(), iter = 30, conv = 0.01, bound = list(a = 2, b = 3.5, c = 0.25), init = list(a = 1, b = 0, c = 0), debug = FALSE)
estimate.items.3pl.mmle(responses, fix = list(), iter = 30, conv = 0.01, bound = list(a = 2, b = 3.5, c = 0.25), init = list(a = 1, b = 0, c = 0), debug = FALSE)
estimate.items.3pl.bme(responses, fix = list(), iter = 30, conv = 0.01, prior = list(a.mu = 0, a.sig = 0.2, b.mu = 0, b.sig = 1, c.alpha = 5, c.beta  = 43), bound = list(a = 2, b = 3.5, c = 0.25), init = list(a = 1, b = 0, c  = 0.1), debug = FALSE)

Arguments

responses
a data frame of responses
model
the IRT model
method
the estimation method
...
further arguments
people
a data frame of people parameters
fix
a list of fixed item parameters
iter
the maximum iterations
conv
the convergence criterion
bound
the bounds of item parameters
init
a list of initial item parameters
debug
TRUE to turn on debug mode
prior
a list of parameters for a-, b-, c-parameter prior distributions

Value

a data frame of estimated item parametersestimated item parameters and diagnosis data if debug mode is on

Details

For the joint maximum likelihood estimation, refer to Baker and Kim (2004), pp. 46-54. To fixing item parameters, pass in a number or a vector (the same length with the items) to the fix argument. The debug mode prints convergence process and add diagnosis data to output

For the marginal maximum likelihood estimation, refer to Baker and Kim (2004), pp.166-174.

For the Bayesian maximum likelihood estimation, refer to Baker and Kim (2004), pp.183-191. In estimate.items.3pl.bme, a parameters is assumed to have a lognormal prior distribution, b parameters a normal prior distribution, and c parameters a beta prior distribution.

Examples

Run this code
## Not run: 
# # data generation
# data <- irt.model(model="3pl")$gen.data(2000, 50)
# # JMLE
# x <- estimate.items(data$responses, model="3pl", method="jmle", people=data$people, debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# # MMLE
# x <- estimate.items(data$responses, model="3pl", method="mmle", debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# # BME
# x <- estimate.items(data$responses, model="3pl", method="bme", debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# ## End(Not run)
## Not run: 
# # data generation
# data <- irt.model(model="3pl")$gen.data(2000, 50)
# # JMLE
# x <- estimate.items.3pl.jmle(data$responses, data$people, debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# # MMLE
# x <- estimate.items.3pl.mmle(data$responses, debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# # BME
# x <- estimate.items.3pl.bme(data$responses, debug=TRUE)
# cor(data$items, x$items)
# plot(data$items$a, x$items$a, xlim=c(0, 2), ylim=c(0, 2), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$b, x$items$b, xlim=c(-4, 4), ylim=c(-4, 4), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# plot(data$items$c, x$items$c, xlim=c(0, .3), ylim=c(0, .3), pch=16, 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.6))
# ## End(Not run)

Run the code above in your browser using DataLab