Learn R Programming

xxIRT (version 2.0.0)

estimate.people: Estimation of People Parameters

Description

estimate.people is a wrapper function for estimating people parameters

estimate.people.3pl.mle estimates people parameters with known item parameters using maximum likelihood estimation.

estimate.people.3pl.map estimates people parameters with known item parameters using maximum a posterior.

estimate.3pl.theta.eap estimates people parameters with known item parameters using expected a posterior.

Usage

estimate.people(responses, items, model = "3pl", method = "mle", ...)
estimate.people.3pl.mle(responses, items, init = 0, iter = 30, conv = 0.01, bound = 3.5, debug = FALSE)
estimate.people.3pl.map(responses, items, prior.mu = 0, prior.sig = 1, init = 0, iter = 15, conv = 0.01, bound = 3.5, debug = FALSE)
estimate.people.3pl.eap(responses, items)

Arguments

responses
a data frame of responses
items
a data frame of item parameters
model
the IRT model
method
the estimation method
...
further arguments
init
initial values of people parameters, a number or a vector
iter
the maximum of iterations
conv
convergence criterion
bound
the bounds of resulting people parameters
debug
TRUE to turn on debug mode
prior.mu
the mean of the prior distribuiton
prior.sig
the standard deviation of the prior distribution

Value

a data frame of estimated people parameters

Details

The debug mode draws a convergence curve. For the maximum likelihood estimation, refer to Baker and Kim (2004), pp. 66-69.

For the maximum a posteriori estimation, refer to Baker and Kim (2004), pp. 192.

For the expected a posteriori, refer to Baker and Kim (2004), pp. 193.

Examples

Run this code
## Not run: 
# # data generation
# data <- irt.model(model="3pl")$gen.data(500, 50)
# # MLE
# x <- estimate.people(data$responses, data$items, "3pl", "mle", debug=TRUE)
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# # MAP
# x <- estimate.people(data$responses, data$items, "3pl", "map", debug=TRUE)
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# # EAP
# x <- estimate.people(data$responses, data$items, "3pl", "eap")
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# ## End(Not run)
## Not run: 
# # data generation
# data <- irt.model(model="3pl")$gen.data(500, 50)
# # MLE
# x <- estimate.people.3pl.mle(data$responses, data$items, debug=TRUE)
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# # MAP
# x <- estimate.people.3pl.map(data$responses, data$items, debug=TRUE)
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# # EAP
# x <- estimate.people.3pl.eap(data$responses, data$items)
# cor(data$people$theta, x$people$theta)
# plot(data$people$theta, x$people$theta, xlim=c(-4,4), ylim=c(-4,4), 
# xlab="True", ylab="Est.", col=rgb(.8,.2,.2,.5), pch=16)
# ## End(Not run)

Run the code above in your browser using DataLab