Learn R Programming

xxIRT (version 2.0.0)

mst: Computerized Multistage Testing Simulation

Description

mst creates a multistage (MST) object

mst.route.index.search is a helper function for finding the index of a given route vector

mst.get.index is a helper function for getitng route (in topdown method) or module (in bottomup method) indices

mst.route manipulates routes in the mst

mst.objective adds objective functions to the mst

mst.constraint adds constraints to the mst

mst.stage.length sets the minimal and maximal length for a stage

mst.assemble assembles items

mst.get.items extracts items from results

mst.sim performs a simulation for an assembled mst

Usage

mst(pool, design, npanel, method)
mst.route.index.search(x, route)
mst.get.index(x, indices)
mst.route(x, route, op)
mst.objective(x, theta, indices = NULL, target = NULL, flatten = NULL, theta.step = 2)
mst.constraint(x, coef, min = NA, max = NA, level = NULL, indices = NULL)
mst.stage.length(x, stages, min = NA, max = NA)
mst.assemble(x, ...)
"print"(x, ...)
"plot"(x, ...)
mst.get.items(x, panel, stage = NULL, module = NULL, route = NULL)
mst.sim(x, theta.true)

Arguments

pool
a data frame of items
design
a numeric vector to specify the MST design (e.g., 1-2-3, or 1-2-2)
npanel
the number of panels
method
the design method (i.e., 'topdown' or 'bottomup')
x
the mst object
route
a index number or a vector of module index
indices
the index of the route (topdown) or the module (bottomup) for adding objectives
op
"+" for adding a route and "-" for removing a route
theta
a theta point or range for optimization
target
the target valus of the TIF objectives. NULL for maximization
flatten
the parameter for getting a flat TIF
theta.step
the step parameters to bridge theta.lb and theta.ub
coef
the coefficients of the constraint
min
the minimal value of the contraint
max
the maximal value of the contraint
level
the level value for a categorical constraint
stages
the stage index
...
further arguments
panel
the index of panel
stage
the index of stage
module
the index of module
theta.true
the true value of theta parameter

Value

mst returns a mst objectmst.get.index returns a selected route- or module-map in the mst

Details

The mst object contains an item pool (pool), a test assembler (assembler), a route map (route), a stage-module map (module), a design method (method), and several constants such as npanel, nstage, nmodule, nroute. Two indices are used to index modules/testlets. form number is a unique identifier for all modules, which is used for automated test assembly. index is a panel-wise unique identifier, which is used for routing. There are two design methods for mst: 'bottomup' and 'topdown'. In the bottomup approach, constraitns are imposed on individual modules; however, in the topdown approach, constraints are imposed on routes.

plot.mst draws module information functions if byroute=FALSE and route information functions if byroute=TRUE

Examples

Run this code
## Not run: 
# # ex. 1: 1-2-2 MST, 2 panels, topdown, 20 items, content = c(10, 5, 5)
# # maximize information at -1 for easy routes and 1 for hard routes
# pool <- irt.model()$gen.data(1,300)$items
# pool$content <- sample(1:3, nrow(pool), replace=TRUE)
# pool$time <- round(exp(rnorm(nrow(pool), log(60), .2)))
# x <- mst(pool, design=c(1,2,2), npanel=2, method='topdown')
# x$route
# x <- mst.objective(x, theta=-1, indices=1:2)
# x <- mst.objective(x, theta=1, indices=3:4)
# x <- mst.constraint(x, 1, 20, 20)
# x <- mst.constraint(x, "content", 10, 10, level=1)
# x <- mst.constraint(x, "content", 5, 5, level=2)
# x <- mst.constraint(x, "content", 5, 5, level=3)
# x <- mst.stage.length(x, c(1,2,3), min=5)
# x <- mst.assemble(x)
# freq(mst.get.items(x, panel=1,route=1)$content, 1:3)$n
# freq(mst.get.items(x, panel=2,route=4)$content, 1:3)$n
# plot(x)
# plot(x, byroute=TRUE)
# mst.sim(x, 1)
# mst.sim(x, -1)
# # ex. 2: 1-2-2 MST, 2 panels, bottomup, 10 items per stage, content = c(4, 3, 3)
# # maximize information at -1 for easy modules, 0 for medium modules and 1 for hard modules
# x <- mst(pool, design=c(1,2,2), npanel=2, method='bottomup')
# x$module
# x <- mst.objective(x, theta=0, indices=1)
# x <- mst.objective(x, theta=-1, indices=c(2,4))
# x <- mst.objective(x, theta=1, indices=c(3,5))
# x <- mst.constraint(x, 1, 10, 10)
# x <- mst.constraint(x, "content", 4, 4, level=1)
# x <- mst.constraint(x, "content", 3, 3, level=2)
# x <- mst.constraint(x, "content", 3, 3, level=3)
# x <- mst.assemble(x)
# freq(mst.get.items(x, panel=1,route=1)$content, 1:3)$n
# freq(mst.get.items(x, panel=2,route=4)$content, 1:3)$n
# plot(x)
# plot(x, byroute=TRUE)
# mst.sim(x, 1)
# mst.sim(x, -1)
# # ex. 3: 1-2-3 MST, 2 panels, topdown, 30 items, 
# # content = c(10, 10, 10), prohibit routes with radical changes
# # maximize information at -1 for easy, 0 for medium and 1 for hard routes
# x <- mst(pool, design=c(1,2,3), npanel=2, method='topdown')
# x <- mst.route(x, c(1,2,6), "-")
# x <- mst.route(x, c(1,3,4), "-")
# x$route
# x <- mst.objective(x, -1, indices=1)
# x <- mst.objective(x,  0, indices=2:3)
# x <- mst.objective(x,  1, indices=4)
# x <- mst.constraint(x, 1, 30, 30)
# x <- mst.constraint(x, "content", 10, 10, level=1)
# x <- mst.constraint(x, "content", 10, 10, level=2)
# x <- mst.constraint(x, "content", 10, 10, level=3)
# x <- mst.stage.length(x, c(1,2,3), min=3)
# x <- mst.assemble(x, timeout=5*60)
# freq(mst.get.items(x, panel=1,route=1)$content, 1:3)$n
# freq(mst.get.items(x, panel=2,route=4)$content, 1:3)$n
# plot(x)
# plot(x, byroute=TRUE)
# mst.sim(x, 1)
# mst.sim(x, .2)
# mst.sim(x, -.2)
# mst.sim(x, -1)
# # ex. 4: 1-2-3 MST, 2 panels, bottomup, 10 items per stage, 
# # content = c(4, 3, 3), prohibit routes with radical changes
# # target information at 6 (theta=-1) for easy, 6 (theta=0) for medium 
# # and 6 (theta=1) for hard modules
# x <- mst(pool, design=c(1,2,3), npanel=2, method='bottomup')
# x <- mst.route(x, c(1,2,6), "-")
# x <- mst.route(x, c(1,3,4), "-")
# x$module
# x <- mst.objective(x, -1, indices=c(2,4), target=6)
# x <- mst.objective(x,  0, indices=c(1,5), target=6)
# x <- mst.objective(x,  1, indices=c(3,6), target=6)
# x <- mst.constraint(x, 1, 10, 10)
# x <- mst.constraint(x, "content", 4, 4, level=1)
# x <- mst.constraint(x, "content", 3, 3, level=2)
# x <- mst.constraint(x, "content", 3, 3, level=3)
# x <- mst.stage.length(x, c(1,2,3), min=3)
# x <- mst.assemble(x, timeout=5*60)
# freq(mst.get.items(x, panel=1,route=1)$content, 1:3)$n
# freq(mst.get.items(x, panel=2,route=4)$content, 1:3)$n
# plot(x)
# plot(x, byroute=TRUE)
# mst.sim(x, 1)
# mst.sim(x, .2)
# mst.sim(x, -.2)
# mst.sim(x, -1)
# ## End(Not run)

Run the code above in your browser using DataLab