Rdocumentation
powered by
Learn R Programming
yap (version 0.1.1)
Yet Another Probabilistic Neural Network
Description
Another implementation of probabilistic neural network in R based on Specht (1990)
. It is applicable to the pattern recognition with a N-level response, where N > 2.
Copy Link
Link to current version
Version
Version
0.1.1
0.1.0
Install
install.packages('yap')
Monthly Downloads
15
Version
0.1.1
License
GPL (>= 2)
Issues
0
Pull Requests
0
Stars
7
Forks
1
Repository
https://github.com/statcompute/yap
Maintainer
WenSui Liu
Last Published
October 25th, 2020
Functions in yap (0.1.1)
Search all functions
pnn.x_imp
Derive the importance of a predictor used in the PNN
pnn.fit
Create a probabilistic neural network
gen_latin
Generate random numbers of latin hypercube sampling
pnn.imp
Derive the importance rank of all predictors used in the PNN
folds
Generate a list of index for the n-fold cross-validation
dummies
Convert a N-category vector to a N-dimension matrix
pnn.predone
Calculate the predicted probability for each category of PNN
pnn.search_logl
Search for the optimal value of PNN smoothing parameter based on the cross entropy
gen_sobol
Generate sobol sequence
pnn.pfi
Derive the PFI rank of all predictors used in the PNN
pnn.predict
Calculate a matrix of predicted probabilities
logl
Calculate the multiclass cross-entropy
gen_unifm
Generate Uniform random numbers
pnn.optmiz_logl
Optimize the optimal value of PNN smoothing parameter based on the cross entropy
pnn.parpred
Calculate predicted probabilities of PNN by using parallelism
pnn.x_pfi
Derive the permutation feature importance of a predictor used in the PNN