Learn R Programming

yuima (version 1.15.27)

fitCIR: Calculate preliminary estimator and one-step improvements of a Cox-Ingersoll-Ross diffusion

Description

This is a function to simulate the preliminary estimator and the corresponding one step estimators based on the Newton-Raphson and the scoring method of the Cox-Ingersoll-Ross process given via the SDE

\(\mathrm{d} X_t = (\alpha-\beta X_t)\mathrm{d} t + \sqrt{\gamma X_t}\mathrm{d} W_t\)

with parameters \(\beta>0,\) \(2\alpha>5\gamma>0\) and a Brownian motion \((W_t)_{t\geq 0}\). This function uses the Gaussian quasi-likelihood, hence requires that data is sampled at high-frequency.

Usage

fitCIR(data)

Value

A list with three entries each contain a vector in the following order: The result of the preliminary estimator, Newton-Raphson method and the method of scoring.

If the sampling points are not equidistant the function will return 'Please use equidistant sampling points'.

Arguments

data

a numeric matrix containing the realization of \((t_0,X_{t_0}), \dots,(t_n,X_{t_n})\) with \(t_j\) denoting the \(j\)-th sampling times. data[1,] contains the sampling times \(t_0,\dots, t_n\) and data[2,] the corresponding value of the process \(X_{t_0},\dots,X_{t_n}.\) In other words data[,j]=\((t_j,X_{t_j})\). The observations should be equidistant.

Author

Nicole Hufnagel

Contacts: nicole.hufnagel@math.tu-dortmund.de

Details

The estimators calculated by this function can be found in the reference below.

References

Y. Cheng, N. Hufnagel, H. Masuda. Estimation of ergodic square-root diffusion under high-frequency sampling. Econometrics and Statistics, Article Number: 346 (2022).

Examples

Run this code
#You can make use of the function simCIR to generate the data 
data <- simCIR(alpha=3,beta=1,gamma=1, n=5000, h=0.05, equi.dist=TRUE)
results <- fitCIR(data)

Run the code above in your browser using DataLab