# Data set closed to 100 (percentages, common dl = 1%)
# (Note that zeros and missing in the same row are allowed)
X <- matrix(c(26.91,8.08,12.59,31.58,6.45,14.39,
39.73,41.42,0.00,NA,6.80,12.05,
NA,35.13,7.96,14.28,35.12,7.51,
10.85,46.40,31.89,10.86,0.00,0.00,
10.85,16.27,NA,9.16,19.57,44.15,
38.09,7.62,23.68,9.70,20.91,0.00,
NA,9.89,18.04,44.30,9.04,18.73,
44.41,15.04,7.95,0.00,10.82,21.78,
11.50,30.33,6.85,13.92,30.82,6.58,
19.04,42.59,0.00,38.37,0.00,0.00),byrow=TRUE,ncol=6)
X_multReplus <- multReplus(X,dl=rep(1,6))
# Multiple limits of detection by component
mdl <- matrix(0,ncol=6,nrow=10)
mdl[2,] <- rep(1,6)
mdl[4,] <- rep(0.75,6)
mdl[6,] <- rep(0.5,6)
mdl[8,] <- rep(0.5,6)
mdl[10,] <- c(0,0,1,0,0.8,0.7)
X_multReplus2 <- multReplus(X,dl=mdl)
# Non-closed compositional data set
data(LPdataZM) # (in ppm; 0 is nondetect and NA is missing data)
dl <- c(2,1,0,0,2,0,6,1,0.6,1,1,0,0,632,10) # limits of detection (0 for no limit)
LPdataZM2 <- subset(LPdataZM,select=-c(Cu,Ni,La)) # select a subset for illustration purposes
dl2 <- dl[-c(5,7,10)]
if (FALSE) {
LPdataZM2_multReplus <- multReplus(LPdataZM2,dl=dl2)
# Negative values generated (see e.g. K in sample #64)
}
# Workaround: use residual part to fill up the gap to 10^6 for imputation
LPdataZM2_multReplus <- multReplus(LPdataZM2,dl=dl2,closure=10^6)
Run the code above in your browser using DataLab