Learn R Programming

distr6 (version 1.3.2)

Beta: Beta Distribution Class

Description

Mathematical and statistical functions for the Beta distribution, which is commonly used as the prior in Bayesian modelling.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Beta$new(shape1 = 1, shape2 = 1, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
shape1, shape2 numeric positive shape parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Beta distribution is parameterised with shape1 and shape2 as positive numerics.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr
mode(which = "all") mode

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

The Beta distribution parameterised with two shape parameters, \(\alpha, \beta\), is defined by the pdf, $$f(x) = (x^{\alpha-1}(1-x)^{\beta-1}) / B(\alpha, \beta)$$ for \(\alpha, \beta > 0\), where \(B\) is the Beta function.

The distribution is supported on \([0, 1]\).

mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. CoreStatistics for numerical results.

Examples

Run this code
# NOT RUN {
x = Beta$new(shape1 = 2, shape2 = 5)

# Update parameters
x$setParameterValue(shape1 = 1)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab