Learn R Programming

⚠️There's a newer version (1.6.9) of this package.Take me there.

distr6

https://www.r-pkg.org/badges/version-ago/distr6 https://cranlogs.r-pkg.org/badges/grand-total/distr6?color=brightgreen

What is distr6?

distr6 is a unified and clean interface to organise the probability distributions implemented in R into one R6 object oriented package, as well as adding distributions yet to implemented in R, currently we have 42 probability distributions as well as 11 kernels. Building the package from the ground up and making use of tried and tested design patterns (as per Gamma et al. 1994), distr6 aims to make probability distributions easy to use, understand and analyse.

distr6 extends the work of Peter Ruckdeschel, Matthias Kohl et al. who created the first object-oriented (OO) interface for distributions using S4. Their distr package is currently the gold-standard in R for OO distribution handling. Using R6 we aim to take this even further and to create a scalable interface that can continue to grow with the community. Full details of the API and class structure can be seen in the distr6 website.

Main Features

distr6 is not intended to replace the base R distributions function but instead to give an alternative that focuses on distributions as objects that can be manipulated and accessed as required. The main features therefore centre on OOP practices, design patterns and API design. Of particular note:

All distributions in base R introduced as objects with methods for common statistical functions including pdf, cdf, inverse cdf, simulation, mean, variance, skewness and kurtosis

B <- Binomial$new(prob = 0.5, size = 10)
B$pdf(1:10)
#>  [1] 0.0097656250 0.0439453125 0.1171875000 0.2050781250 0.2460937500
#>  [6] 0.2050781250 0.1171875000 0.0439453125 0.0097656250 0.0009765625
B$kurtosis()
#> [1] -0.2
B$rand(5)
#> [1] 7 7 4 7 6
summary(B)
#> Binomial Probability Distribution. Parameterised with:
#>   prob = 0.5, size = 10
#> 
#>   Quick Statistics 
#>  Mean:       5
#>  Variance:   2.5
#>  Skewness:   0
#>  Ex. Kurtosis:   -0.2
#> 
#>  Support: {0,...,10}     Scientific Type: ℕ0 
#> 
#>  Traits: discrete; univariate
#>  Properties: symmetric; platykurtic; no skew

Flexible construction of distributions for common parameterisations

Exponential$new(rate = 2)
#> Exp(rate = 2)
Exponential$new(scale = 2)
#> Exp(scale = 2)
Normal$new(mean = 0, prec = 2)
#> Norm(mean = 0, prec = 2)
Normal$new(mean = 0, sd = 3)$parameters()
#>      id     value support                                 description
#> 1: mean         0       ℝ                   Mean - Location Parameter
#> 2:  var         9      ℝ+          Variance - Squared Scale Parameter
#> 3:   sd         3      ℝ+        Standard Deviation - Scale Parameter
#> 4: prec 0.1111111      ℝ+ Precision - Inverse Squared Scale Parameter

Decorators for extending functionality of distributions to more complex modelling methods

B <- Binomial$new()
decorate(B, ExoticStatistics)
#> B is now decorated with ExoticStatistics
#> Binom(prob = 0.5, size = 10)
B$survival(2)
#> [1] 0.9453125
decorate(B, CoreStatistics)
#> B is now decorated with CoreStatistics
#> Binom(prob = 0.5, size = 10)
B$kthmoment(6)
#> Results from numeric calculations are approximate only. Better results may be available.
#> [1] 190

S3 compatibility to make the interface more flexible for users who are less familiar with OOP

B <- Binomial$new()
mean(B) # B$mean()
#> [1] 5
variance(B) # B$variance()
#> [1] 2.5
cdf(B, 2:5) # B$cdf(2:5)
#> [1] 0.0546875 0.1718750 0.3769531 0.6230469

Wrappers including truncation, huberization and product distributions for manipulation and composition of distributions.

B <- Binomial$new()
TruncatedDistribution$new(B, lower = 2, upper = 5) #Or: truncate(B,2,5)
#> TruncBinom(Binom_prob = 0.5, Binom_size = 10)
N <- Normal$new()
MixtureDistribution$new(list(B,N), weights = c(0.1, 0.9))
#> BinomMixNorm(Binom_prob = 0.5, Binom_size = 10, Norm_mean = 0, Norm_var = 1)
ProductDistribution$new(list(B,N))
#> BinomProdNorm(Binom_prob = 0.5, Binom_size = 10, Norm_mean = 0, Norm_var = 1)

Additionally we introduce a SetSymbol class for a purely symbolic representation of sets for Distribution typing

Binomial$new()$type()
#> [1] "ℕ0"
Binomial$new()$support()
#> [1] "{0,...,10}"
Set$new(1:5)
#> [1] "{1,...,5}"
Interval$new(1,5)
#> [1] "[1,5]"
PosReals$new()
#> [1] "ℝ+"

Usage

distr6 has three primary use-cases:

  1. Upgrading base Extend the R distributions functions to classes so that each distribution additionally has basic statistical methods including expectation and variance and properties/traits including discrete/continuous, univariate/multivariate, etc.
  2. Statistics Implementing decorators and adaptors to manipulate distributions including distribution composition. Additionally functionality for numeric calculations based on any arbitrary distribution.
  3. Modelling Probabilistic modelling using distr6 objects as the modelling targets. Objects as targets is an understood ML paradigm and introducing distributions as classes is the first step to implementing probabilistic modelling.

Installation

For the latest release on CRAN, install with

install.packages("distr6")

Otherwise for the latest stable build

remotes::install_github("alan-turing-institute/distr6")

Future Plans

Our plans for the next update include

  • A generalised qqplot for comparing any distributions
  • A finalised FunctionImputation decorator with different imputation strategies
  • Discrete distribution subtraction (negative convolution)
  • A wrapper for scaling distributions to a given mean and variance
  • More probability distributions
  • Any other good suggestions made between now and then!

Package Development and Contributing

distr6 is released under the MIT licence with acknowledgements to the LGPL-3 licence of distr. Therefore any contributions to distr6 will also be accepted under the MIT licence. We welcome all bug reports, issues, questions and suggestions which can be raised here but please read through our contributing guidelines for details including our code of conduct.

Acknowledgements

distr6 is the result of a collaboration between many people, universities and institutions across the world, without whom the speed and performance of the package would not be up to the standard it is. Firstly we acknowledge all the work of Prof. Dr. Peter Ruckdeschel and Prof. Dr. Matthias Kohl in developing the original distr family of packages. Secondly their significant contributions to the planning and design of distr6 including the distribution and probability family class structures. A team of undergraduates at University College London implemented many of the probability distributions and designed the plotting interface. The team consists of Shen Chen (@ShenSeanChen), Jordan Deenichin (@jdeenichin), Chengyang Gao (@garoc371), Chloe Zhaoyuan Gu (@gzy823), Yunjie He (@RoyaHe), Xiaowen Huang (@w090613), Shuhan Liu (@shliu99), Runlong Yu (@Edwinyrl), Chijing Zeng (@britneyzeng) and Qian Zhou (@yumizhou47). We also want to thank Prof. Dr. Bernd Bischl for discussions about design choices and useful features, particularly advice on the ParameterSet class. Finally University College London and The Alan Turing Institute for hosting workshops, meetings and providing coffee whenever needed.

Copy Link

Version

Install

install.packages('distr6')

Monthly Downloads

332

Version

1.3.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Raphael Sonabend

Last Published

January 12th, 2020

Functions in distr6 (1.3.2)

Beta

Beta Distribution Class
Binomial

Binomial Distribution Class
Arcsine

Arcsine Distribution Class
Cauchy

Cauchy Distribution Class
Categorical

Categorical Distribution Class
Bernoulli

Bernoulli Distribution Class
BetaNoncentral

Noncentral Beta Distribution Class
ArrayDistribution-deprecated

Product Array Distribution
ChiSquared

Chi-Squared Distribution Class
ChiSquaredNoncentral

Noncentral Chi-Squared Distribution Class
Complex

Set of Complex Numbers
Convolution

Distribution Convolution Wrapper
DistributionWrapper

Abstract DistributionWrapper Class
DistributionDecorator

Abstract DistributionDecorator Class
Degenerate

Degenerate Distribution Class
Exponential

Exponential Distribution Class
DiscreteUniform

Discrete Uniform Distribution Class
ExtendedReals

Set of Extended Reals
Distribution

Generalised Distribution Object
Dirichlet

Dirichlet Distribution Class
Empty

Empty Set
Empirical

Empirical Distribution Class
Hypergeometric

Hypergeometric Distribution Class
FunctionImputation

Imputed Pdf/Cdf/Quantile/Rand Functions
Epanechnikov

Epanechnikov Kernel
CoreStatistics

Core Statistical Methods for Distributions
Integers

Set of Integers
FDistributionNoncentral

Noncentral F Distribution Class
Frechet

Frechet Distribution Class
Gumbel

Gumbel Distribution Class
Cosine

Cosine Kernel
HuberizedDistribution

Distribution Huberization Wrapper
ExoticStatistics

Exotic Statistical Methods for Distributions
Interval

R6 Generalised Class for Symbolic Intervals
InverseGamma

Inverse Gamma Distribution Class
Extract.VectorDistribution

Extract one or more Distributions from a VectorDistribution
Kernel

Abstract Kernel Class
Gamma

Gamma Distribution Class
Lognormal

Log-Normal Distribution Class
MultivariateNormal

Multivariate Normal Distribution Class
ParameterSet

Make an R6 Parameter Set for Distributions
Logarithmic

Logarithmic Distribution Class
NormalKernel

Normal Kernel
Logistic

Logistic Distribution Class
Pareto

Pareto Distribution Class
Poisson

Poisson Distribution Class
Geometric

Geometric Distribution Class
FDistribution

'F' Distribution Class
Gompertz

Gompertz Distribution Class
MixtureDistribution

Mixture Distribution Wrapper
Laplace

Laplace Distribution Class
PosIntegers

Set of Positive Integers
Naturals

Set of Natural Numbers
Loglogistic

Log-Logistic Distribution Class
NegReals

Set of Negative Reals
PosReals

Set of Positive Reals
SpecialSet

Special Mathematical Sets
LogisticKernel

Logistic Kernel
PosRationals

Set of Positive Rationals
NegRationals

Set of Negative Rationals
StudentT

Student's T Distribution Class
ProductDistribution

Product Distribution
c.Distribution

Combine Distributions into a VectorDistribution
Sigmoid

Sigmoid Kernel
huberize

Huberize a Distribution
Silverman

Silverman Kernel
NegIntegers

Set of Negative Integers
PosNaturals

Set of Positive Natural Numbers
NegativeBinomial

Negative Binomial Distribution Class
Normal

Normal Distribution Class
as.ParameterSet

Coerce to a ParameterSet
elements

Set Elements Accessor
WeightedDiscrete

WeightedDiscrete Distribution Class
Multinomial

Multinomial Distribution Class
complement.SetInterval

Symbolic Complement for SetInterval
Quartic

Quartic Kernel
getParameterValue

Parameter Value Accessor
as.data.table

Coerce ParameterSet to data.table
decorate

Decorate Distributions
class.SetInterval

SetInterval Minimum Accessor
Weibull

Weibull Distribution Class
as.numeric.Interval

Coerces Interval to Numeric
power.SetInterval

Symbolic Exponentiation for SetInterval
TriangularKernel

Triangular Kernel
Tricube

Tricube Kernel
support

Support Accessor
Set

R6 Generalised Class for Symbolic Sets
getParameterSupport

Parameter Support Accessor
VectorDistribution

Vectorise Distributions
Wald

Wald Distribution Class
cdfAntiDeriv

Cumulative Distribution Function Anti-Derivative
Triweight

Triweight Kernel
Reals

Set of Reals
TruncatedDistribution

Distribution Truncation Wrapper
exkurtosisType

Kurtosis Type
cumHazard

Cumulative Hazard Function
SetInterval

R6 Generalised Class for Symbolic Sets and Intervals
correlation

Distribution Correlation
SDistribution

Abstract Special Distribution Class
kurtosis

Distribution Kurtosis
pgf

Probability Generating Function
kurtosisType

Type of Kurtosis Accessor
dmin

Distribution Minimum Accessor
min.SetInterval

SetInterval Minimum Accessor
liesInSupport

Test if Data Lies in Distribution Support
liesInSetInterval

Test if Data Lies in SetInterval.
genExp

Generalised Expectation of a Distribution
plot.Distribution

Plot Distribution Functions for a distr6 Object
dmax

Distribution Maximum Accessor
traits

Traits Accessor
mgf

Moment Generating Function
Rationals

Set of Rationals
testContinuous

assert/check/test/Continuous
skewType

Skewness Type
listKernels

Lists Implemented Kernels
mode

Mode of a Distribution
entropy

Distribution Entropy
kthmoment

Kth Moment
getSymbol.SetInterval

SetInterval Symbol Accessor
isRand

Test the Distribution Rand Exist?
product.SetInterval

Symbolic Cartesian Product for SetInterval
parameters

Parameters Accessor
listSpecialSets

Lists Implemented R6 Special Sets
distr6-package

distr6: Object Oriented Distributions in R
cdfPNorm

Cumulative Distribution Function P-Norm
Triangular

Triangular Distribution Class
truncate

Truncate a Distribution
length.Interval

Length of Interval
max.SetInterval

SetInterval Maximum Accessor
setOperation

Symbolic Operations for SetInterval
testMultivariate

assert/check/test/Multivariate
decorators

Decorators Accessor
skewness

Distribution Skewness
qqplot

Quantile-Quantile Plots for distr6 Objects
hazard

Hazard Function
listWrappers

Lists Implemented Distribution Wrappers
Rayleigh

Rayleigh Distribution Class
cf

Characteristic Function
StudentTNoncentral

Noncentral Student's T Distribution Class
testDistribution

assert/check/test/Distribution
listDistributions

Lists Implemented Distributions
listDecorators

Lists Implemented Distribution Decorators
Uniform

Uniform Distribution Class
dimension.SetInterval

SetInterval Dimension Accessor
distr6News

Show distr6 NEWS.md File
merge.ParameterSet

Combine ParameterSets
UniformKernel

Uniform Kernel
length.Set

Length of Set
mean.Distribution

Distribution Mean
properties

Properties Accessor
liesInType

Test if Data Lies in Distribution Type
rand

Random Simulation Function
setParameterValue

Parameter Value Setter
lines.Distribution

Superimpose Distribution Functions Plots for a distr6 Object
testDiscrete

assert/check/test/Discrete
sup

Supremum Accessor
inf

Infimum Accessor
cdf

Cumulative Distribution Function
print.ParameterSet

Print a ParameterSet
generalPNorm

Generalised P-Norm
isCdf

Test the Distribution Cdf Exist?
testNegativeSkew

assert/check/test/NegativeSkew
iqr

Distribution Interquartile Range
strprint

String Representation of Print
summary.Distribution

Distribution Summary
testPlatykurtic

assert/check/test/Platykurtic
stdev

Standard Deviation of a Distribution
prec

Precision of a Distribution
variateForm

Variate Form Accessor
wrappedModels

Gets Internally Wrapped Models
testNoSkew

assert/check/test/NoSkew
type

Type Accessor
median.Distribution

Median of a Distribution
pdf

Probability Density/Mass Function
type.SetInterval

SetInterval Type Accessor
testUnivariate

assert/check/test/Univariate
sup.SetInterval

SetInterval Supremum Accessor
toproper

Coerce String to Proper Case
testMixture

assert/check/test/Mixture
testMesokurtic

assert/check/test/Mesokurtic
makeUniqueDistributions

De-Duplicate Distribution Names
testPositiveSkew

assert/check/test/PositiveSkew
squared2Norm

Squared Probability Density Function 2-Norm
symmetry

Symmetry Accessor
skewnessType

Type of Skewness Accessor
survivalPNorm

Survival Function P-Norm
ArrayDistribution

Deprecated distr6 Functions and Classes
inf.SetInterval

SetInterval Infimum Accessor
union.SetInterval

Symbolic Unions for SetInterval
testSymmetric

assert/check/test/Symmetric
testDistributionList

assert/check/test/DistributionList
isPdf

Test the Distribution Pdf Exist?
pdfPNorm

Probability Density Function P-Norm
isQuantile

Test the Distribution Quantile Exist?
setSymbol

Unicode Symbol of Special Sets
update.ParameterSet

Updates a ParameterSet
variance

Distribution Variance
valueSupport

Value Support Accessor
survivalAntiDeriv

Survival Function Anti-Derivative
quantile.Distribution

Inverse Cumulative Distribution Function
simulateEmpiricalDistribution

Sample Empirical Distribution Without Replacement
survival

Survival Function
testLeptokurtic

assert/check/test/Leptokurtic
testMatrixvariate

assert/check/test/Matrixvariate