# Compare performance of linear and quadratic discriminant analysis with
# Configurations C1 and c4 on the ChinaT data set by 5-fold cross-validation
# replicated twice
# Create an Interval-Data object containing the intervals for 899 observations
# on the temperatures by quarter in 60 Chinese meteorological stations.
ChinaT <- IData(ChinaTemp[1:8])
# Classical (configuration 1) Linear Discriminant Analysis
CVldaC1 <- DACrossVal(ChinaT,ChinaTemp$GeoReg,TrainAlg=lda,Config=1,kfold=5,CVrep=2)
summary(CVldaC1[,,"Clerr"])
glberrors <-
apply(CVldaC1[,,"Nk"]*CVldaC1[,,"Clerr"],1,sum)/apply(CVldaC1[,,"Nk"],1,sum)
cat("Average global classification error =",mean(glberrors),"")
# Linear Discriminant Analysis with configuration 4
CVldaC4 <- DACrossVal(ChinaT,ChinaTemp$GeoReg,TrainAlg=lda,Config=4,kfold=5,CVrep=2)
summary(CVldaC4[,,"Clerr"])
glberrors <-
apply(CVldaC4[,,"Nk"]*CVldaC4[,,"Clerr"],1,sum)/apply(CVldaC4[,,"Nk"],1,sum)
cat("Average global classification error =",mean(glberrors),"")
# Classical (configuration 1) Quadratic Discriminant Analysis
CVqdaC1 <- DACrossVal(ChinaT,ChinaTemp$GeoReg,TrainAlg=qda,Config=1,kfold=5,CVrep=2)
summary(CVqdaC1[,,"Clerr"])
glberrors <-
apply(CVqdaC1[,,"Nk"]*CVqdaC1[,,"Clerr"],1,sum)/apply(CVqdaC1[,,"Nk"],1,sum)
cat("Average global classification error =",mean(glberrors),"")
# Quadratic Discriminant Analysis with configuration 4
CVqdaC4 <- DACrossVal(ChinaT,ChinaTemp$GeoReg,TrainAlg=qda,Config=4,kfold=5,CVrep=2)
summary(CVqdaC4[,,"Clerr"])
glberrors <-
apply(CVqdaC4[,,"Nk"]*CVqdaC4[,,"Clerr"],1,sum)/apply(CVqdaC4[,,"Nk"],1,sum)
cat("Average global classification error =",mean(glberrors),"")
Run the code above in your browser using DataLab