#Create an Interval-Data object containing the intervals of temperatures
# by quarter for 60 Chinese meteorological stations.
ChinaT <- IData(ChinaTemp[1:8])
# Create an Interval-Data object containing the intervals for 899 observations
# on the temperatures by quarter in 60 Chinese meteorological stations.
ChinaT <- IData(ChinaTemp[1:8])
#Quadratic Discriminant Analysis, assuming independent Interval Variables
# (Configuration C3)
ChinaqdaC3 <- qda(ChinaT,ChinaTemp$GeoReg,Config=3)
cat("China quadratic discriminant analysis results =\n") ; print(ChinaqdaC3)
cat("qda Prediction results:\n")
print(predict(ChinaqdaC3,ChinaT)$class)
#Estimate error rates by three-fold cross-validation, replicated five times
CVqdaC3 <- DACrossVal(ChinaT,ChinaTemp$GeoReg,TrainAlg=qda,Config=3,kfold=3,CVrep=5)
summary(CVqdaC3[,,"Clerr"])
glberrors <-
apply(CVqdaC3[,,"Nk"]*CVqdaC3[,,"Clerr"],1,sum)/apply(CVqdaC3[,,"Nk"],1,sum)
cat("Average global classification error =",mean(glberrors),"\n")
Run the code above in your browser using DataLab