Learn R Programming

selectMeta (version 1.0.8)

DearBeggMonotoneCItheta: Compute an approximate profile likelihood ratio confidence interval for effect estimate

Description

Under some assumptions on the true underlying $p$-value density the usual likelihood ratio theory for the finite-dimensional parameter of interest, $\theta$, holds although we estimate the infinite-dimensional nuisance parameter $w$, see Murphy and van der Vaart (2000). These functions implement such a confidence interval. To this end we compute the set $${\theta : \tilde l(\theta, \hat \sigma(\theta), \hat w(\theta)) \ge c}$$ where $c = - 0.5 \cdot \chi_{1-\alpha}^2(1)$ and $\tilde l$ is the relative profile log-likelihood function. The functions DearBeggProfileLL and DearBeggToMinimizeProfile are not intended to be called by the user directly.

Usage

DearBeggMonotoneCItheta(res, lam = 2, conf.level = 0.95, maxiter = 500)
DearBeggProfileLL(z, res0, lam, conf.level = 0.95, maxiter = 500)
DearBeggToMinimizeProfile(vec, theta, y, u, lam)

Arguments

res
Output from function DearBeggMonotone.
lam
Weight of the first entry of $w$ in the likelihood function. Should be the same as used to generate res.
conf.level
Confidence level of confidence interval.
maxiter
Maximum number of iterations of differential evolution algorithm used in computation of confidence limits. Increase this number to get higher accuracy.
z
Variable to maximize over, corresponds to $\theta$.
res0
Output from DearBeggMonotone, contains initial estimates.
vec
Vector of parameters over which we maximize.
theta
Current $\theta$.
y
Normally distributed effect sizes.
u
Associated standard errors.

Value

  • A list with the element
  • ci.thetathat contains the profile likelihood confidence interval for $\theta$.

References

Murphy, S. and van der Vaart, A. (2000). On profile likelihood. J. Amer. Statist. Assoc., 95, 449--485. Rufibach, K. (2011). Selection Models with Monotone Weight Functions in Meta-Analysis. Biom. J., 53(4), 689--704.

See Also

The estimate under a monotone selection function can be computed using DearBeggMonotone.

Examples

Run this code
## compute confidence interval for theta in the education dataset
data(education)
N  <- education$N
y  <- education$theta
u  <- sqrt(2 / N)
lam1 <- 2
res.edu <- DearBeggMonotone(y, u, lam = lam1, maxiter = 1000, 
    CR = 1, trace = FALSE)
r1 <- DearBeggMonotoneCItheta(res.edu, lam = 2, conf.level = 0.95)
res.edu$theta
r1$ci.theta

## compute confidence interval for theta in the passive smoking dataset
data(passive_smoking)
u <- passive_smoking$selnRR
y <- passive_smoking$lnRR
lam1 <- 2
res.toba <- DearBeggMonotone(y, u, lam = lam1, maxiter = 1000, 
    CR = 1, trace = FALSE)
r2 <- DearBeggMonotoneCItheta(res.toba, lam = 2, conf.level = 0.95)
res.toba$theta
r2$ci.theta

Run the code above in your browser using DataLab