## Not run:
#
# set.seed(23235)
# ss <- TRUE # sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# hc2 <- hclust(dist(iris[ss,-5]), "single")
# # dend1 <- as.dendrogram(hc1)
# # dend2 <- as.dendrogram(hc2)
# # cutree(dend1)
#
# FM_index(cutree(hc1, k=3), cutree(hc1, k=3)) # 1 with EV
# FM_index(cutree(hc1, k=3), cutree(hc1, k=3), include_EV= FALSE) # 1
#
# # checking speed gains
# library(microbenchmark)
# microbenchmark(FM_index(cutree(hc1, k=3), cutree(hc1, k=3)),
# FM_index(cutree(hc1, k=3), cutree(hc1, k=3),
# include_EV= FALSE),
# FM_index(cutree(hc1, k=3), cutree(hc1, k=3),
# include_EV= TRUE, assume_sorted_vectors=TRUE),
# FM_index(cutree(hc1, k=3), cutree(hc1, k=3),
# include_EV= FALSE, assume_sorted_vectors=TRUE)
# )
# # C code is 1.2-1.3 times faster.
#
# set.seed(1341)
# FM_index(cutree(hc1, k=3), sample(cutree(hc1, k=3)),
# assume_sorted_vectors =TRUE) # 0.38037
# FM_index(cutree(hc1, k=3), sample(cutree(hc1, k=3)),
# assume_sorted_vectors =FALSE) # 1 again :)
# FM_index(cutree(hc1, k=3), cutree(hc2, k=3)) # 0.8059
# FM_index(cutree(hc1, k=30), cutree(hc2, k=30)) # 0.4529
#
# fo <- function(k) FM_index(cutree(hc1, k), cutree(hc2, k))
# lapply(1:4, fo)
# ks <- 1:150
# plot(sapply(ks, fo)~ ks, type = "b", main = "Bk plot for the iris dataset")
#
# ## End(Not run)
Run the code above in your browser using DataLab