Learn R Programming

FMsmsnReg (version 1.0)

FMsmsnReg: Linear Regression Models with Finite Mixtures of Skew Heavy-Tailed Errors

Description

Performs a Finite Mixture of Scale Mixture Skew Normal Regression Model using EM-type algorithm (ECME) for iteratively computing maximum likelihood estimates of the parameters.

Usage

FMsmsnReg(y, x1, Abetas = NULL, medj= NULL, sigma2 = NULL, shape = NULL, pii = NULL, g = NULL, get.init = TRUE, criteria = TRUE, group = FALSE, family = "Skew.normal", error = 0.00001, iter.max = 100, obs.prob= FALSE, kmeans.param = NULL, show.convergence=TRUE, cp=0.4)

Arguments

y
the response matrix (dimension nx1)
x1
Matrix or vector of covariates.
Abetas
Parameters of vector regression dimension $(p + 1)$ include intercept
medj
a list of g arguments of vectors of initial values (dimension p) for the location parameters
sigma2
a list of g arguments of matrices of initial values (dimension pxp) for the scale parameters
shape
a list of g arguments of vectors of initial values (dimension p) for the skewness parameters
pii
Initial value for the EM algorithm. Each of them must be a vector of length g. (the algorithm considers the number of components to be adjusted based on the size of these vectors)
g
the number of cluster to be considered in fitting
get.init
if TRUE, the initial values are generated via k-means
criteria
It indicates if are calculated the criterion selection methods (AIC, BIC, EDC and ICL)
group
if TRUE, the vector with the classification of the response is returned
family
distribution famility to be used in fitting (Skew.t", "Skew.cn", "Skew.slash", "Skew.normal")
error
define the stopping criterion of the algorithm
iter.max
the maximum number of iterations of the EM algorithm
obs.prob
if TRUE, the posterior probability of each observation belonging to one of the g groups is reported
kmeans.param
a list with alternative parameters for the kmeans function when generating initial values, list(iter.max = 10, n.start = 1, algorithm = "Hartigan-Wong")
show.convergence
graphics of convergence for the parameters
cp
Cut Point

Value

The function returns a list with 16 elements detailed as
iter
Number of iterations.
criteria
Attained criteria value.
convergence
Convergence reached or not.
mu
Location parameter estimate.
sigma2
Scale parameter estimate.
lambda
Shape parameter estimate.
pii
Weight parameter estimate.
nu
Estimated degrees of freedom parameter.
SE
Standard Error estimates, if the output shows NA the function does not provide the standard error for this parameter.
table
Table containing the inference for the estimated parameters.
loglik
Log-likelihood value.
AIC
Akaike information criterion.
BIC
Bayesian information criterion.
EDC
Efficient Determination Criterion.
ICL
Information Completed Likelihood.
time
Processing time.

References

Basso, R. . M., Lachos, V. H., Cabral, C. R., Ghosh, P., 2010. Robust mixture modeling based on scale mixtures of skew-normal distributions. Computational Statistics & Data Analysis doi:10.1016/j.csda.2009.09.031.

Lachos, V. H., Ghosh, P., Arellano-Valle, R. B., 2010. Likelihood based inference for skew - normal independent linear mixed models. Statistica Sinica 20, 303 - 322.

See Also

FMsmsnReg, ais, horses

Examples

Run this code
#See examples for the FMsmsnReg function linked above.

Run the code above in your browser using DataLab