Learn R Programming

BACCO (version 1.0-50)

H.fun: H function

Description

H. See front page of KOHsupp.

Usage

H.fun(theta, D1, D2, H1, H2, phi)

Arguments

theta
parameters
D1
matrix of code run points
D2
matrix of observation points
H1
Regressor function for D1
H2
Regressor function for D2
phi
hyperparameters

References

M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464 M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.shef.ac.uk/~st1ao/ps/calsup.ps R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)

Examples

Run this code
data(toys)
H.fun(theta=theta.toy, D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, phi=phi.toy)
H.fun(theta=theta.toy, D1=D1.toy[1,,drop=FALSE], D2=D2.toy, H1=H1.toy, H2=H2.toy, phi=phi.toy)
H.fun(theta=theta.toy, D1=D1.toy[1,,drop=FALSE], D2=D2.toy[1,,drop=FALSE], H1=H1.toy, H2=H2.toy, phi=phi.toy)

Run the code above in your browser using DataLab