A wrapper for huberizing any probability distribution at given limits.
Returns an R6 object of class HuberizedDistribution.
HuberizedDistribution$new(distribution, lower = NULL, upper = NULL)
Argument | Type | Details |
distribution |
distribution | Distribution to huberize. |
lower |
numeric | Lower limit for huberization. |
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
wrappedModels(model = NULL) |
wrappedModels |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
d/p/q/r Methods | Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
Statistical Methods | Link |
prec() |
prec |
stdev() |
stdev |
median() |
median.Distribution |
iqr() |
iqr |
cor() |
cor |
Parameter Methods | Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods | Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods | Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
Huberizes a distribution at lower and upper limits, using the formula
\(f_H(x) = F(x), if x \le lower\)
\(f_H(x) = f(x), if lower < x < upper\)
\(f_H(x) = F(x), if x \ge upper\)
where f_H is the pdf of the truncated distribution H = Huberize(X, lower, upper) and \(f_X\)/\(F_X\) is the pdf/cdf of the original distribution.
If lower or upper are NULL they are taken to be self$inf()
and self$sup()
respectively.
The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with
FunctionImputation
first.
# NOT RUN {
hubBin <- HuberizedDistribution$new(
Binomial$new(prob = 0.5, size = 10),
lower = 2, upper = 4)
hubBin$getParameterValue("prob")
hubBin$pdf(2)
# }
Run the code above in your browser using DataLab