# NOT RUN {
library("HelpersMG")
es <- matrix(c("e1", "52", "12", "12", "5",
"e2", "59", "12.5", "9", "5",
"e3", "55", "13", "15", "9",
"e4", "58", "14.5", "5", "5",
"e5", "66", "15.5", "11", "13.5",
"e6", "62", "16", "15", "18",
"e7", "63", "17", "12", "18",
"e8", "69", "18", "9", "18"), ncol=5, byrow = TRUE)
colnames(es) <- c("<U+00C9>l<U+00E8>ve", "Poids", "<U+00C2>ge", "Assiduit<U+00E9>", "Note")
es <- as.data.frame(es, stringsasFactor=FALSE)
es[, 2] <- as.numeric(as.character(es[, 2]))
es[, 3] <- as.numeric(as.character(es[, 3]))
es[, 4] <- as.numeric(as.character(es[, 4]))
es[, 5] <- as.numeric(as.character(es[, 5]))
es
df <- IC_clean_data(es, debug = TRUE)
cor_matrix <- IC_threshold_matrix(data=df, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=cor_matrix, threshold = 0.3)
par(mar=c(1,1,1,1))
set.seed(4)
plot(cor_threshold)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)
# Using the model All at a time
cor_threshold_AAT <- IC_threshold_matrix(data=df, threshold = 0.3, model="AAT")
par(mar=c(1,1,1,1))
set.seed(4)
plot(cor_threshold_AAT, show.legend.strength="bottomleft")
############
dta <- structure(list(<U+00C9>l<U+00E8>ve = structure(1:8, .Label = c("e1", "e2",
"e3", "e4", "e5", "e6", "e7", "e8"), class = "factor"), Poids = c(52L,
59L, 55L, 58L, 66L, 62L, 63L, 69L), <U+00C2>ge = c(12, 12.5, 13, 14.5,
15.5, 16, 17, 18), Assiduit<U+00E9> = c(12L, 9L, 15L, 5L, 11L, 15L,
12L, 9L), Note = c(5, 5, 9, 5, 13.5, 18, 18, 18), e1 = c(1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), e2 = c(0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L), e3 = c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L), e4 = c(0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L), e5 = c(0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L),
e6 = c(0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L), e7 = c(0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L), e8 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L
)), .Names = c("<U+00C9>l<U+00E8>ve", "Poids", "<U+00C2>ge", "Assiduit<U+00E9>",
"Note", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8"), class = "data.frame", row.names = c(NA,
-8L))
dta0 <- dta[, 2:ncol(dta)]
ic0 <- IC_threshold_matrix(data = dta0)
cor_threshold <- IC_threshold_matrix(data=ic0, threshold = 0.3)
par(mar=c(1,1,1,1))
set.seed(4)
library("igraph")
plot(cor_threshold, vertex.color="red", show.legend.strength = FALSE)
plot(IC_correlation_simplify(matrix=cor_threshold),
show.legend.strength = FALSE, show.legend.direction = FALSE)
# }
Run the code above in your browser using DataLab