# NOT RUN {
library("HelpersMG")
es <- matrix(c("e1", "52", "12", "12", "5",
"e2", "59", "12.5", "9", "5",
"e3", "55", "13", "15", "9",
"e4", "58", "14.5", "5", "5",
"e5", "66", "15.5", "11", "13.5",
"e6", "62", "16", "15", "18",
"e7", "63", "17", "12", "18",
"e8", "69", "18", "9", "18"), ncol=5, byrow = TRUE)
colnames(es) <- c("<U+00C9>l<U+00E8>ve", "Poids", "<U+00C2>ge", "Assiduit<U+00E9>", "Note")
es <- as.data.frame(es, stringsasFactor=FALSE)
es[, 2] <- as.numeric(as.character(es[, 2]))
es[, 3] <- as.numeric(as.character(es[, 3]))
es[, 4] <- as.numeric(as.character(es[, 4]))
es[, 5] <- as.numeric(as.character(es[, 5]))
es
df <- IC_clean_data(es, debug = TRUE)
cor_matrix <- IC_threshold_matrix(data=df, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df, threshold = 0.3)
par(mar=c(1,1,1,1))
set.seed(4)
library("igraph")
library("visNetwork")
kk <- plot(cor_threshold, vertex.color="red")
# it can be shown also with the visNetwork package
visIgraph(kk)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)
# }
Run the code above in your browser using DataLab