Learn R Programming

RSSL (version 0.9.3)

LaplacianSVM: Laplacian SVM classifier

Description

Manifold regularization applied to the support vector machine as proposed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

LaplacianSVM(X, y, X_u = NULL, lambda = 1, gamma = 1, scale = TRUE,
  kernel = vanilladot(), adjacency_distance = "euclidean",
  adjacency_k = 6, normalized_laplacian = FALSE, eps = 1e-09)

Arguments

X

matrix; Design matrix for labeled data

y

factor or integer vector; Label vector

X_u

matrix; Design matrix for unlabeled data

lambda

numeric; L2 regularization parameter

gamma

numeric; Weight of the unlabeled data

scale

logical; Should the features be normalized? (default: FALSE)

kernel

kernlab::kernel to use

adjacency_distance

character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"

adjacency_k

integer; Number of of neighbours used to construct adjacency graph.

normalized_laplacian

logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used

eps

numeric; Small value to ensure positive definiteness of the matrix in the QP formulation

Value

S4 object of type LaplacianSVM

References

Belkin, M., Niyogi, P. & Sindhwani, V., 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, pp.2399-2434.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

Run this code
# NOT RUN {
library(RSSL)
library(ggplot2)
library(dplyr)

## Example 1: Half moons

# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3) 
df <- df_orig %>% 
  add_missinglabels_mar(Class~.,0.98)

lambda <- 0.001
C <- 1/(lambda*2*sum(!is.na(df$Class)))
gamma <- 10000
rbf_param <- 0.125

# Train classifiers
class_sup <- SVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  C=C,scale=FALSE)

class_lap <- LaplacianSVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  lambda=lambda,gamma=gamma,
  normalized_laplacian = TRUE,
  scale=FALSE)

classifiers <- list("Lap"=class_lap,"Sup"=class_sup)

# This takes a little longer to run:
# class_tsvm <- TSVM(
#   Class~.,df,
#   kernel=kernlab::rbfdot(rbf_param),
#   C=C,Cstar=10,s=-0.8,
#   scale=FALSE,balancing_constraint=TRUE)
# classifiers <- list("Lap"=class_lap,"Sup"=class_sup,"TSVM"=class_tsvm)

# Plot classifiers (Can take a couple of seconds)
# }
# NOT RUN {
df %>% 
  ggplot(aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = classifiers ,
                  color="black")
# }
# NOT RUN {
  
# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))

## Example 2: Two circles
set.seed(3)
df_orig <- generateTwoCircles(1000,noise=0.05)
df <- df_orig %>% 
  add_missinglabels_mar(Class~.,0.994)

lambda <- 0.000001
C <- 1/(lambda*2*sum(!is.na(df$Class)))
gamma <- 100
rbf_param <- 0.1

# Train classifiers (Takes a couple of seconds)
# }
# NOT RUN {
class_sup <- SVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  C=C,scale=FALSE)

class_lap <- LaplacianSVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  adjacency_k=50, lambda=lambda,gamma=gamma,
  normalized_laplacian = TRUE,
  scale=FALSE)


classifiers <- list("Lap"=class_lap,"Sup"=class_sup)
# }
# NOT RUN {
# Plot classifiers (Can take a couple of seconds)
# }
# NOT RUN {
df %>% 
  ggplot(aes(x=X1,y=X2,color=Class,size=Class)) +
  scale_size_manual(values=c("1"=3,"2"=3),na.value=1) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = classifiers ,
                  color="black",size=1)
# }

Run the code above in your browser using DataLab