Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression
.
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)
matrix; Design matrix for labeled data
factor or integer vector; Label vector
numeric; L2 regularization parameter
logical; Whether an intercept should be included
logical; Should the features be normalized? (default: FALSE)
numeric; Initialization of parameters for the optimization
logical; Should the features be centered?
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()