Learn R Programming

ape (version 4.0)

Moran.I: Moran's I Autocorrelation Index

Description

This function computes Moran's I autocorrelation coefficient of x giving a matrix of weights using the method described by Gittleman and Kot (1990).

Usage

Moran.I(x, weight, scaled = FALSE, na.rm = FALSE, alternative = "two.sided")

Arguments

x
a numeric vector.
weight
a matrix of weights.
scaled
a logical indicating whether the coefficient should be scaled so that it varies between -1 and +1 (default to FALSE).
na.rm
a logical indicating whether missing values should be removed.
alternative
a character string specifying the alternative hypothesis that is tested against the null hypothesis of no phylogenetic correlation; must be of one "two.sided", "less", or "greater", or any unambiguous abbrevation of these.

Value

A list containing the elements:

Details

The matrix weight is used as ``neighbourhood'' weights, and Moran's I coefficient is computed using the formula: $$I = \frac{n}{S_0} \frac{\sum_{i=1}^n\sum_{j=1}^n w_{i,j}(y_i - \overline{y})(y_j - \overline{y})}{\sum_{i=1}^n {(y_i - \overline{y})}^2}$$ with
  • $yi$ = observations
  • $wij$ = distance weight
  • $n$ = number of observations
  • $S0$ = $\code{sum_{i=1..n} sum{j=1..n} wij}$

The null hypothesis of no phylogenetic correlation is tested assuming normality of I under this null hypothesis. If the observed value of I is significantly greater than the expected value, then the values of x are positively autocorrelated, whereas if Iobserved < Iexpected, this will indicate negative autocorrelation.

References

Gittleman, J. L. and Kot, M. (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39, 227--241.

See Also

weight.taxo

Examples

Run this code
tr <- rtree(30)
x <- rnorm(30)
## weights w[i,j] = 1/d[i,j]:
w <- 1/cophenetic(tr)
## set the diagonal w[i,i] = 0 (instead of Inf...):
diag(w) <- 0
Moran.I(x, w)
Moran.I(x, w, alt = "l")
Moran.I(x, w, alt = "g")
Moran.I(x, w, scaled = TRUE) # usualy the same

Run the code above in your browser using DataLab