RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
require("mvtnorm")
pts <- 5
repet <- 3
model <- RMexp()
x <- runif(n=pts, min=-1, max=1)
y <- runif(n=pts, min=-1, max=1)
data <- as.matrix(RFsimulate(model, x=x, y=y, n=repet, spC = FALSE))
print(cbind(x, y, data))
print(unix.time(likeli <- RFlikelihood(model, x, y, data=data)))
str(likeli, digits=8)
L <- 0
C <- RFcovmatrix(model, x, y)
for (i in 1:ncol(data)) {
print(unix.time(dn <- dmvnorm(data[,i], mean=rep(0, nrow(data)),
sigma=C, log=TRUE)))
L <- L + dn
}
print(L)
stopifnot(all.equal(likeli$log, L))
pts <- 5
repet <- 1
trend <- 2 * sin(R.p(new="isotropic")) + 3
#trend <- RMtrend(mean=0)
model <- 2 * RMexp() + trend
x <- seq(0, pi, len=10)
data <- as.matrix(RFsimulate(model, x=x, n=repet, spC = FALSE))
print(cbind(x, y, data))
print(unix.time(likeli <- RFlikelihood(model, x, data=data)))
str(likeli, digits=8)
L <- 0
tr <- RFfctn(trend, x=x, spC = FALSE)
C <- RFcovmatrix(model, x)
for (i in 1:ncol(data)) {
print(unix.time(dn <- dmvnorm(data[,i], mean=tr, sigma=C, log=TRUE)))
L <- L + dn
}
print(L)
stopifnot(all.equal(likeli$log, L))
pts <- c(4, 5)
repet <- c(2, 3)
trend <- 2 * sin(R.p(new="isotropic")) + 3
model <- 2 * RMexp() + trend
x <- y <- data <- list()
for (i in 1:length(pts)) {
x[[i]] <- list(x = runif(n=pts[i], min=-1, max=1),
y = runif(n=pts[i], min=-1, max=1))
data[[i]] <- as.matrix(RFsimulate(model, x=x[[i]]$x, y=x[[i]]$y,
n=repet[i], spC = FALSE))
}
print(unix.time(likeli <- RFlikelihood(model, x, data=data)))
str(likeli, digits=8)
L <- 0
for (p in 1:length(pts)) {
tr <- RFfctn(trend, x=x[[p]]$x, y=x[[p]]$y,spC = FALSE)
C <- RFcovmatrix(model, x=x[[p]]$x, y=x[[p]]$y)
for (i in 1:ncol(data[[p]])) {
print(unix.time(dn <- dmvnorm(data[[p]][,i], mean=tr, sigma=C,
log=TRUE)))
L <- L + dn
}
}
print(L)
stopifnot(all.equal(likeli$log, L))
FinalizeExample()
Run the code above in your browser using DataLab