Mathematical and statistical functions for the Noncentral Student's T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-testing for difference of means and regression analysis.
Returns an R6 object inheriting from class SDistribution.
StudentTNoncentral$new(df = 1, location = 0, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
df |
numeric | degrees of freedom. |
location |
numeric | location (ncp in rstats). |
decorators
The Noncentral Student's T distribution is parameterised with df
as positive numeric and location
as real numeric.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
mode(which = "all") |
mode |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
The Noncentral Student's T distribution parameterised with degrees of freedom, \(\nu\) and location, \(\lambda\), is defined by the pdf, $$f(x) = (\nu^{\nu/2}exp(-(\nu\lambda^2)/(2(x^2+\nu)))/(\sqrt{\pi} \Gamma(\nu/2) 2^{(\nu-1)/2} (x^2+\nu)^{(\nu+1)/2}))\int_{0}^{\infty} y^\nu exp(-1/2(y-x\lambda/\sqrt{x^2+\nu})^2)$$ for \(\nu > 0\), \(\lambda \epsilon R\).
The distribution is supported on the Reals.
skewness
, kurtosis
, mode
, entropy
, pgf
, mgf
and cf
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. Normal
for the Normal distribution, StudentT
for the central Student's T distribution. CoreStatistics
for numerical results.
# NOT RUN {
x = StudentTNoncentral$new(df = 2, location = 3)
# Update parameters
x$setParameterValue(df = 3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab