Mathematical and statistical functions for the Noncentral Student's T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-testing for difference of means and regression analysis.
Returns an R6 object inheriting from class SDistribution.
StudentTNoncentral$new(df = 1, location = 0, decorators = NULL, verbose = FALSE)
| Argument | Type | Details | 
  df  | 
numeric | degrees of freedom. | 
  location  | 
numeric | location (ncp in rstats). | 
decorators 
The Noncentral Student's T distribution is parameterised with df as positive numeric and location as real numeric.
| Variable | Return | 
  name  | 
Name of distribution. | 
  short_name  | 
Id of distribution. | 
  description  | 
Brief description of distribution. | 
| Accessor Methods | Link | 
  decorators()  | 
 decorators  | 
  traits()  | 
 traits  | 
  valueSupport()  | 
 valueSupport  | 
  variateForm()  | 
 variateForm  | 
  type()  | 
 type  | 
  properties()  | 
 properties  | 
  support()  | 
 support  | 
  symmetry()  | 
 symmetry  | 
  sup()   | 
 sup  | 
  inf()  | 
 inf  | 
  dmax()   | 
 dmax  | 
  dmin()  | 
 dmin  | 
  skewnessType()  | 
 skewnessType  | 
  kurtosisType()  | 
 kurtosisType  | 
Statistical Methods  | 
Link | 
  pdf(x1, ..., log = FALSE, simplify = TRUE)  | 
 pdf  | 
  cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)  | 
 cdf | 
  quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)  | 
 quantile.Distribution  | 
  rand(n, simplify = TRUE)  | 
 rand  | 
  mean()  | 
 mean.Distribution  | 
  variance()  | 
 variance  | 
  stdev()  | 
 stdev  | 
  prec()  | 
 prec  | 
  cor()  | 
 cor  | 
  skewness()  | 
 skewness  | 
  kurtosis(excess = TRUE)  | 
 kurtosis  | 
  entropy(base = 2)  | 
 entropy  | 
  mgf(t)  | 
 mgf  | 
  cf(t)  | 
 cf  | 
  pgf(z)  | 
 pgf  | 
  median()  | 
 median.Distribution  | 
  iqr()  | 
 iqr  | 
  mode(which = "all")  | 
 mode  | 
Parameter Methods  | 
Link | 
  parameters(id)  | 
 parameters  | 
  getParameterValue(id, error = "warn")   | 
 getParameterValue  | 
  setParameterValue(..., lst = NULL, error = "warn")  | 
 setParameterValue  | 
Validation Methods  | 
Link | 
  liesInSupport(x, all = TRUE, bound = FALSE)  | 
 liesInSupport  | 
  liesInType(x, all = TRUE, bound = FALSE)  | 
 liesInType  | 
Representation Methods  | 
Link | 
  strprint(n = 2)  | 
 strprint  | 
  print(n = 2)  | 
 print  | 
  summary(full = T)  | 
 summary.Distribution  | 
The Noncentral Student's T distribution parameterised with degrees of freedom, \(\nu\) and location, \(\lambda\), is defined by the pdf, $$f(x) = (\nu^{\nu/2}exp(-(\nu\lambda^2)/(2(x^2+\nu)))/(\sqrt{\pi} \Gamma(\nu/2) 2^{(\nu-1)/2} (x^2+\nu)^{(\nu+1)/2}))\int_{0}^{\infty} y^\nu exp(-1/2(y-x\lambda/\sqrt{x^2+\nu})^2)$$ for \(\nu > 0\), \(\lambda \epsilon R\).
The distribution is supported on the Reals.
skewness, kurtosis, mode, entropy, pgf, mgf and cf
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions for all available distributions. Normal for the Normal distribution, StudentT for the central Student's T distribution. CoreStatistics for numerical results.
# NOT RUN {
x = StudentTNoncentral$new(df = 2, location = 3)
# Update parameters
x$setParameterValue(df = 3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab