The tensor predictor regression model is of the form,
$$Y = B_{(m+1)}vec(X) + \epsilon$$
where response \(Y \in R^{r}\), predictor \(X \in R^{p_1\times \cdots\times p_m}\), \(B \in \in R^{p_1 \times\cdots\times p_m \times r}\) and the error term is multivariate normal distributed. The predictor is tensor normal distributed,
$$X\sim TN(0;\Sigma_1,\dots,\Sigma_m)$$
According to the tensor envelope structure, we have
$$B = [\Theta; \Gamma_1,\ldots, \Gamma_m, I_p],$$
$$\Sigma_k = \Gamma_k \Omega_k \Gamma_k^{T}+ \Gamma_{0k} \Omega_{0k} \Gamma_{0k}^T,$$
for some \(\Theta \in R^{u_1 \times\cdots\times u_m \times p}\), \(\Omega_k \in R^{u_k \times u_k}\) and \(\Omega_{0k} \in \in R^{(p_k - u_k) \times (p_k - u_k)}\), \(k=1,\ldots,m\).