The tensor response regression model is of the form,
$$Y = B \bar{\times}_{(m+1)} X + \epsilon$$
where predictor \(X \in R^{p}\), response \(Y \in R^{r_1\times \cdots\times r_m}\), \(B \in R^{r_1\times \cdots\times r_m \times p}\) and the error term is tensor normal distributed as follows,
$$\epsilon \sim TN(0;\Sigma_1,\dots,\Sigma_m).$$
According to the tensor envelope structure, we have
$$B = [\Theta;\Gamma_1,\ldots,\Gamma_m, I_p],$$
$$\Sigma_k = \Gamma_k \Omega_k \Gamma_k^{T} + \Gamma_{0k} \Omega_{0k} \Gamma_{0k}^T,$$
for some \(\Theta \in R^{u_1\times\cdots\times u_m \times p}\), \(\Omega_k \in R^{u_k \times u_k}\) and \(\Omega_{0k} \in \in R^{(p_k - u_k) \times (p_k - u_k)}\), \(k=1,\ldots,m\).