These functions are a direct adaptation of
add1.glm
and
drop1.glm
for vglm-class objects.
For drop1 methods, a missing scope is taken to be all
terms in the model. The hierarchy is respected when considering terms
to be added or dropped: all main effects contained in a second-order
interaction must remain, and so on.
In a scope formula . means ‘what is already there’.
Compared to
add1.glm
and
drop1.glm
these functions are simpler, e.g., there is no
Cp, F and Rao (score) tests,
x and scale arguments.
Most models do not have a deviance, however twice the
log-likelihood differences are used to test the significance
of terms.
The default output table gives AIC, defined as minus twice log
likelihood plus \(2p\) where \(p\) is the rank of the model (the
number of effective parameters). This is only defined up to an
additive constant (like log-likelihoods).