Learn R Programming

uGMAR (version 3.2.4)

add_data: Add data to object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model

Description

add_data adds or updates data to object of class 'gsmar' that defines a GMAR, StMAR, or G-StMAR model. Also calculates empirical mixing weights, conditional moments, and quantile residuals accordingly.

Usage

add_data(
  data,
  gsmar,
  calc_qresiduals = TRUE,
  calc_cond_moments = TRUE,
  calc_std_errors = FALSE,
  custom_h = NULL
)

Arguments

data

a numeric vector or class 'ts' object containing the data. NA values are not supported.

gsmar

object of class 'gsmar' created with the function fitGSMAR or GSMAR.

calc_qresiduals

should quantile residuals be calculated? Default is TRUE iff the model contains data.

calc_cond_moments

should conditional means and variances be calculated? Default is TRUE iff the model contains data.

calc_std_errors

should approximate standard errors be calculated?

custom_h

A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is 6e-6 for the other parameters.

Value

Returns an object of class 'gsmar' defining the GMAR, StMAR, or G-StMAR model with the data added to the model. If the object already contained data, the data will be updated. Does not modify the 'gsmar' object given as argument!

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.

  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].

  • Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, iterate_more, get_gradient, get_regime_means, swap_parametrization, stmar_to_gstmar

Examples

Run this code
# NOT RUN {
# GMAR model without data
params12 <- c(0.18, 0.93, 0.01, 0.86, 0.68, 0.02, 0.88)
gmar12 <- GSMAR(p=1, M=2, params=params12, model="GMAR")
gmar12

# Add data to the model
gmar12 <- add_data(data=logVIX, gmar12)
gmar12
# }

Run the code above in your browser using DataLab