Learn R Programming

⚠️There's a newer version (3.5.2) of this package.Take me there.

uGMAR

The goal of uGMAR is to provide tools for analysing Gaussian mixture autoregressive (GMAR), Student’s t mixture Autoregressive (StMAR) and Gaussian and Student’s t mixture autoregressive (G-StMAR) models. uGMAR provides functions for unconstrained and constrained maximum likelihood estimation of the model parameters, quantile residual based model diagnostics, simulation from the processes, and forecasting.

Installation

You can install the released version of uGMAR from CRAN with:

install.packages("uGMAR")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("saviviro/uGMAR")

Example

This is a basic example how to estimate a GMAR model to data. For details about the example data “logVIX” see ?logVIX. The estimation process is computationally demanding and takes advantage of parallel computing. After estimating the model, it’s shown by simple examples how to conduct some further analysis.

## Estimate a GMAR(1, 2) model to logarithmized VIX data
data(logVIX, package="uGMAR")
fit <- fitGSMAR(data=logVIX, p=1, M=2, model="GMAR")
fit
summary(fit) # Approximate standard errors in brackets
plot(fit)

get_gradient(fit) # The first order condition
get_soc(fit) # The second order condition (eigenvalues of approximated Hessian)
profile_logliks(fit) # Plot the profile log-likelihood functions

## Quantile residual diagnostics
quantileResidualPlot(fit)
diagnosticPlot(fit)
qrt <- quantileResidualTests(fit)

## Simulate a sample path from the estimated process
sim <- simulateGSMAR(fit, nsimu=10)

## Forecast future values of the process
predict(fit, n_ahead=10, pi=c(0.95, 0.8))

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student’s t-distribution. arXiv:1805.04010 ** eco**n.E**M **
  • Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student’s t-distribution. arXiv:2003.05221 [econ.EM].

Copy Link

Version

Install

install.packages('uGMAR')

Monthly Downloads

392

Version

3.2.4

License

GPL-3

Maintainer

Savi Virolainen

Last Published

March 20th, 2020

Functions in uGMAR (3.2.4)

add_dfs

Add random dfs to a vector
alt_gsmar

Construct a GSMAR model based on results from an arbitrary estimation round of fitGSMAR
all_pos_ints

Check whether all arguments are stricly positive natural numbers
condMoments

Calculate conditional moments of GMAR, StMAR, or G-StMAR model
checkPM

Check that p and M are correctly set
checkConstraintMat

Check the constraint matrices
calc_gradient

Calculate gradient or Hessian matrix
format_valuef

Function factory for formatting values
changeRegime

Change the specified regime of parameter vector to the given regime-parameter vector
check_data

Check that given object contains data
check_gsmar

Check that given object has class attribute 'gsmar'
diagnosticPlot

Quantile residual based diagnostic plots for GMAR, StMAR, and G-StMAR models
extractRegime

Extract regime from a parameter vector
fitGSMAR

Estimate Gaussian or Student's t Mixture Autoregressive model
change_parametrization

Change parametrization of a parameter vector
getOmega

Generate the covariance matrix Omega for quantile residual tests
get_IC

Calculate AIC, HQIC and BIC
loglikelihood_int

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
get_ar_roots

Calculate absolute values of the roots of the AR characteristic polynomials
print.gsmarpred

Print method for class 'gsmarpred' objects
predict.gsmar

Forecast GMAR, StMAR, or G-StMAR process
isStationary

Check the stationary condition of specified GMAR, StMAR, or G-StMAR model.
mixingWeights

Calculate mixing weights of GMAR, StMAR or G-StMAR model
get_varying_h

Get differences 'h' which are adjusted for overly large degrees of freedom parameters
mixingWeights_int

Calculate mixing weights of a GMAR, StMAR, or G-StMAR model
pick_phi0

Pick phi0 or mean parameters from parameter vector
plot.gsmarpred

Plot method for class 'gsmarpred' objects
plot.qrtest

Quantile residual tests for GMAR, StMAR , and G-StMAR models
quantileResidualPlot

Plot quantile residual time series and histogram
sortComponents

Sort the mixture components of a GMAR, StMAR, or G-StMAR model
removeAllConstraints

Transform constrained and restricted parameter vector into the regular form
simulateGSMAR

Simulate values from GMAR, StMAR, and G-StMAR processes
randomIndividual

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
nParams

Calculate the number of parameters
standardErrors

Calculate standard errors for estimates of a GMAR, StMAR, or GStMAR model
randomIndividual_int

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
parameterChecks

Check the parameter vector is specified correctly
pick_alphas

Pick mixing weights parameters from parameter vector
checkAndCorrectData

Check that the data is set correctly and correct if not
T10Y1Y

Spread between 10-Year and 1-Year treasury rates: T10Y1Y
check_model

Check that the argument 'model' is correctly specified.
check_params_length

Check that the parameter vector has the correct dimension
VIX

CBOE Volatility Index: VIX
get_regime_means

Calculate regime specific means \(\mu_{m}\)
reformConstrainedPars

Reform parameter vector with linear constraints to correspond non-constrained parameter vector.
get_regime_vars

Calculate regime specific variances \(\gamma_{m,0}\)
get_minval

Returns the default smallest allowed log-likelihood for given data.
get_regime_autocovs

Calculate regime specific autocovariances \(\gamma\)\(_{m,p}\)
loglikelihood

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
reformParameters

Reform any parameter vector into standard form.
reformRestrictedPars

Reform parameter vector with restricted autoregressive parameters to correspond non-restricted parameter vector.
uncondMoments

Calculate unconditional mean, variance, first p autocovariances and autocorrelations of the GSMAR process.
uncondMoments_int

Calculate unconditional mean, variance, and the first p autocovariances and autocorrelations of a GSMAR process.
logVIX

CBOE Volatility Index: logVIX
regime_distance

Calculate "distance" between two regimes
print.gsmarsum

Print method from objects of class 'gsmarsum'
isStationary_int

Check the stationarity and identification conditions of specified GMAR, StMAR, or G-StMAR model.
pick_dfs

Pick degrees of freedom parameters from a parameter vector
pick_pars

Pick \(\phi_0\) (or \(\mu\)), AR-coefficients, and variance parameters from a parameter vector
random_arcoefs

Create random AR coefficients
iterate_more

Maximum likelihood estimation of GMAR, StMAR, or G-StMAR model with preliminary estimates
profile_logliks

Plot profile log-likehoods around the estimates
uGMAR

uGMAR: Estimate Univariate Gaussian and Student's t Mixture Autoregressive Models
warn_dfs

Warn about large degrees of freedom parameter values
random_regime

Create random regime parameters
swap_parametrization

Swap the parametrization of object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
quantileResiduals

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
quantileResiduals_int

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
stmar_to_gstmar

Estimate a G-StMAR model based on a StMAR model with large degrees of freedom parameters
stmarpars_to_gstmar

Transform a StMAR model parameter vector to a corresponding G-StMAR model parameter vector with large dfs parameters reduced.
add_data

Add data to object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
GAfit

Genetic algorithm for preliminary estimation of GMAR, StMAR, or G-StMAR model
GSMAR

Create object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model