Learn R Programming

FinancialMath (version 0.1.1)

annuity.geo: Geometric Annuity

Description

Solves for the present value, future value, number of payments/periods, amount of the first payment, the payment growth rate, and/or the interest rate for a geometrically growing annuity. It can also plot a time diagram of the payments.

Usage

annuity.geo(pv=NA,fv=NA,n=NA,p=NA,k=NA,i=NA,ic=1,pf=1,imm=TRUE,plot=FALSE)

Arguments

pv
present value of the annuity
fv
future value of the annuity
n
number of payments/periods for the annuity
p
amount of the first payment
k
payment growth rate per period
i
nominal interest rate convertible ic times per year
ic
interest conversion frequency per year
pf
the payment frequency- number of payments/periods per year
imm
option for annuity immediate or annuity due, default is immediate (TRUE)
plot
option to display a time diagram of the payments

Value

Details

Effective Rate of Interest: $eff.i=(1+\frac{i}{ic})^{ic}-1$

$j=(1+eff.i)^{\frac{1}{pf}}-1$

$fv=pv*(1+j)^n$

Annuity Immediate:

j != k: $pv=p*\frac{1-(\frac{1+k}{1+j})^n}{j-k}$

j = k: $pv=p*\frac{n}{1+j}$

Annuity Due:

j != k: $pv=p*\frac{1-(\frac{1+k}{1+j})^n}{j-k}*(1+j)$

j = k: $pv=p*n$

See Also

annuity.arith

annuity.level

perpetuity.arith

perpetuity.geo

perpetuity.level

Examples

Run this code
annuity.geo(pv=NA,fv=100,n=10,p=9,k=.02,i=NA,ic=2,pf=.5,plot=TRUE)

annuity.geo(pv=NA,fv=128,n=5,p=NA,k=.04,i=.03,pf=2)

Run the code above in your browser using DataLab