Learn R Programming

FinancialMath (version 0.1.1)

annuity.level: Level Annuity

Description

Solves for the present value, future value, number of payments/periods, interest rate, and/or the amount of the payments for a level annuity. It can also plot a time diagram of the payments.

Usage

annuity.level(pv=NA,fv=NA,n=NA,pmt=NA,i=NA,ic=1,pf=1,imm=TRUE,plot=FALSE)

Arguments

pv
present value of the annuity
fv
future value of the annuity
n
number of payments/periods
pmt
value of the level payments
i
nominal interest rate convertible ic times per year
ic
interest conversion frequency per year
pf
the payment frequency- number of payments/periods per year
imm
option for annuity immediate or annuity due, default is immediate (TRUE)
plot
option to display a time diagram of the payments

Value

Details

Effective Rate of Interest: $eff.i=(1+\frac{i}{ic})^{ic}-1$

$j=(1+eff.i)^{\frac{1}{pf}}-1$

Annuity Immediate:

$pv=pmt*{a_{\left. {\overline {\, n \,}}\! \right |j}}=pmt*\frac{1-(1+j)^{-n}}{j}$

$fv=pmt*{s_{\left. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{\left. {\overline {\, n \,}}\! \right |j}}*(1+j)^n$

Annuity Due:

$pv=pmt*{\ddot {a}_{\left. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{\left. {\overline {\, n \,}}\! \right |j}}*(1+j)$

$fv=pmt*{\ddot {s}_{\left. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{\left. {\overline {\, n \,}}\! \right |j}}*(1+j)^{n+1}$

See Also

annuity.arith

annuity.geo

perpetuity.arith

perpetuity.geo

perpetuity.level

Examples

Run this code
annuity.level(pv=NA,fv=101.85,n=10,pmt=8,i=NA,ic=1,pf=1,imm=TRUE)

annuity.level(pv=80,fv=NA,n=15,pf=2,pmt=NA,i=.01,imm=FALSE)

Run the code above in your browser using DataLab