cca
), Redundancy Analysis
(rda
) or Constrained Analysis of Principal Coordinates
(capscale
) to assess the significance of constraints.## S3 method for class 'cca':
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=10000, ...)
permutest.cca(x, permutations=100, model=c("direct", "reduced","full"), strata)
cca
.permutest.cca
returns an object of class
permutest.cca
which has its own print
method. The
function anova.cca
calls permutest.cca
, fills an
anova
table and uses print.anova
for printing.anova.cca
and permutest.cca
implement an ANOVA
like permutation test for the joint effect of constraints in
cca
, rda
or capscale
.
Functions anova.cca
and permutest.cca
differ in printout
style and in interface.
Function permutest.cca
is the proper workhorse, but
anova.cca
passes all parameters to permutest.cca
. In anova.cca
the number of permutations is controlled by
targeted ``critical'' $P$ value (alpha
) and accepted Type
II or rejection error (beta
). If the results of permutations
differ from the targeted alpha
at risk level given by
beta
, the permutations are
terminated. If the current estimate of $P$ does not
differ significantly from alpha
of the alternative hypothesis,
the permutations are
continued with step
new permutations.
The function permutest.cca
implements a permutation test for
the ``significance'' of constraints in cca
,
rda
or capscale
. Community data are
permuted with choice model = "direct"
, residuals after
partial CCA/RDA/CAP with choice model = "reduced"
,
and residuals after CCA/RDA/CAP under choice model = "full"
.
If there is no partial CCA/RDA/CAP stage, model = "reduced"
simply permutes
the data. The test statistic is ``pseudo-$F$'', which is the ratio
of constrained and unconstrained total Inertia (Chi-squares, variances
or something similar), each divided by their respective ranks. If
there are no conditions ("partial" terms),
the sum of all eigenvalues
remains constant, so that pseudo-$F$ and eigenvalues would give
equal results. In partial CCA/RDA/CAP, the effect of conditioning variables
(``covariables'') is removed before permutation, and these residuals
are added to the non-permuted fitted values of partial CCA (fitted
values of X ~ Z
). Consequently, the total Chi-square is not
fixed, and test based on pseudo-$F$ would differ from the test based on
plain eigenvalues. CCA is a weighted method, and environmental data
are re-weighted at each permutation step.
cca
, rda
, capscale
.data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ Al + P + K, varechem)
anova(vare.cca)
permutest.cca(vare.cca)
## Test for adding variable N to the previous model:
anova(cca(varespec ~ N + Condition(Al + P + K), varechem), step=40)
Run the code above in your browser using DataLab