### Simulated example
library(MASS)
csize <- 15
c1 <- mvrnorm(csize, mu=c(5,3,4),
Sigma=matrix(c(2, 0,0,0, 2, 1, 0, 1, 2),3,3))
c2 <- mvrnorm(csize, mu=c(5.5, 3.5, 4.5),
Sigma=matrix(c(2, 0,0,0, 2, 1, 0, 1, 2),3,3))
c3 <- mvrnorm(csize, mu=c(0,0,0),
Sigma=matrix(c(2, 0,0,0, 2, 1, 0, 1, 2),3,3))
X <- rbind(c1, c2, c3)
classes <- c(rep(1, csize), rep(2, csize), rep(3, csize))
bdkmap <- bdk(X, classvec2classmat(classes), somgrid(4, 4, "hexagonal"))
plot(bdkmap, "prediction", palette=rainbow)
### Wine example
data(wines)
set.seed(7)
training <- sample(length(wine.classes), 120)
Xtraining <- scale(wines[training,])
bdk.wines <- bdk(Xtraining, classvec2classmat(wine.classes[training]),
grid = somgrid(5, 5, "hexagonal"))
Xtest <- scale(wines[-training,],
center = attr(Xtraining, "scaled:center"),
scale = attr(Xtraining, "scaled:scale"))
bdk.prediction <- predict(bdk.wines, newdata=Xtest)
table(wine.classes[-training], bdk.prediction$classif)
Run the code above in your browser using DataLab