Learn R Programming

kohonen (version 1.1.1)

plot.kohonen: Plot kohonen object

Description

Plot self-organising map, obtained from function kohonen. Several types of plots are supported.

Usage

plot.kohonen(x, type = c("changes", "codes", "counts", "mapping",
                         "prediction", "property"),
             classif, labels=NULL, pchs=NULL, main=NULL,
             palette.name = heat.colors, ncolors, 
             zlim=NULL, property, heatkey=TRUE, contin, bgcol=NULL,
             ...)

Arguments

x
kohonen object.
type
type of plot. (Wow!)
classif
classification object, as returned by predict.kohonen, or vector of unit numbers. Only needed if type equals "mapping" and "counts".
labels
labels to plot when type equals "mapping".
pchs
symbols to plot when type equals "mapping".
main
title of the plot.
palette.name
colors to use as unit background for "codes", "counts", "prediction", and "property" plotting types.
ncolors
number of colors to use. Default is 20 for continuous data, and the number of distinct values (if less than 20) for class data.
zlim
optional range for color coding of unit backgrounds.
property
values to use with the "property" plotting type.
heatkey
whether or not to generate a heatkey at the left side of the plot in the "property" and "counts" plotting types.
contin
whether or not the data should be seen as discrete (i.e. classes) or continuous in nature. Only relevant for the colour keys of plots of supervised networks.
bgcol
optional argument to colour the unit backgrounds for the "mapping" and "codes" plotting type. Defaults to "gray" and "transparent" in both types, respectively.
...
other graphical parameters, e.g. colours of labels, or plotting symbols, in the "mapping" plotting type.

Details

Several different types of plots are supported: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

See Also

som, bdk, xyf

Examples

Run this code
data(wines)
set.seed(7)

kohmap <- xyf(scale(wines), classvec2classmat(wine.classes),
              grid = somgrid(5, 5, "hexagonal"), rlen=100)
plot(kohmap, type="changes", main="plot of changes")
plot(kohmap, type="codes", main="codes plot")
plot(kohmap, type="counts", main="counts plot")
plot(kohmap, type="mapping", 
     labels=wine.classes, col=wine.classes,
     main="mapping plot")
xyfpredictions <- predict(kohmap, newdata=kohmap$codes)$classif
bgcols <- c("gray", "pink", "lightgreen")
plot(kohmap, type="mapping", col=wine.classes,
     pchs=wine.classes, bgcol=bgcols[as.integer(xyfpredictions)], 
     main="another mapping plot")

plot(kohmap, type="prediction",
     labels=paste("Variety", 1:3),
     palette.name = rainbow,
     main="unit class prediction", cex=.8)

### Plot mean distance of mapped objects to their unit codebook vector
hits <- sort(unique(kohmap$unit.classif))
distances <- rep(NA, 25)
for (i in seq(along=hits))
  distances[hits[i]] <- mean(kohmap$distances[kohmap$unit.classif == hits[i]])

plot(kohmap, type="property", property=distances,
     main="property plot: mean distances")

Run the code above in your browser using DataLab