Learn R Programming

BACCO (version 1.0-50)

beta2hat.fun: estimator for beta2

Description

estimates beta2 as per the equation of page 4 of the supplement. Used by p.page4()

Usage

beta2hat.fun(D1, D2, H1, H2, V, z, etahat.d2, extractor, E.theta,
Edash.theta, phi)

Arguments

D1
Matrix of code run points
D2
Matrix of observation points
H1
regression basis functions
H2
regression basis functions
V
overall covariance matrix
z
vector of observations
etahat.d2
expectation as per etahat.vector
extractor
extractor function
E.theta
Expectation
Edash.theta
Expectation wrt thetadash
phi
hyperparameters

References

M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464 M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.shef.ac.uk/~st1ao/ps/calsup.ps R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)

See Also

W2

Examples

Run this code
data(toys)

etahat.d2 <- etahat(D1=D1.toy, D2=D2.toy, H1=H1.toy, y=y.toy,
E.theta=E.theta.toy, extractor=extractor.toy, phi=phi.toy)

beta2hat.fun(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=NULL,
z=z.toy, etahat.d2=etahat.d2, extractor=extractor.toy,
E.theta=E.theta.toy, Edash.theta=Edash.theta.toy, phi=phi.toy)

jj <- create.new.toy.datasets(D1.toy , D2.toy)
phi.true <- phi.true.toy(phi=phi.toy)
y.toy <- jj$y.toy
z.toy <- jj$z.toy
d.toy <- jj$d.toy

etahat.d2 <- etahat(D1=D1.toy, D2=D2.toy, H1=H1.toy, y=y.toy,
E.theta=E.theta.toy, extractor=extractor.toy, phi=phi.toy)

beta2hat <- beta2hat.fun(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=NULL,
z=z.toy, etahat.d2=etahat.d2, extractor=extractor.toy,
E.theta=E.theta.toy, Edash.theta=Edash.theta.toy,
phi=phi.toy)

print(beta2hat)

plot(z.toy , H2.toy(D2.toy) %*% beta2hat)

Run the code above in your browser using DataLab