# Example 1
nn = 2000
(myrho <- rhobit(2, inverse=TRUE))
ymat = rbinom2.rho(n=nn, mu1=0.8, rho=myrho, exch=TRUE)
(mytab <- table(ymat[,1], ymat[,2]))
fit = vglm(ymat ~ 1, binom2.rho(exch=TRUE))
coef(fit, matrix=TRUE)
# Example 2
x = sort(runif(nn))
mu1 = probit(-2+4*x, inverse=TRUE)
mu2 = probit(-1+3*x, inverse=TRUE)
dmat = dbinom2.rho(mu1=mu1, mu2=mu2, rho=myrho)
ymat = rbinom2.rho(n=nn, mu1=mu1, mu2=mu2, rho=myrho)
fit2 = vglm(ymat ~ x, binom2.rho)
coef(fit2, matrix=TRUE)
matplot(x, dmat, lty=1:4, col=1:4, type="l", main="Joint probabilities",
ylim=0:1, lwd=2, ylab="Probability")
legend(x=0.25, y=0.9, lty=1:4, col=1:4, lwd=2,
legend=c("1 = (y1=0, y2=0)", "2 = (y1=0, y2=1)",
"3 = (y1=1, y2=0)", "4 = (y1=1, y2=1)"))
Run the code above in your browser using DataLab