Learn R Programming

conjoint (version 1.41)

caPartUtilities: Function caPartUtilities calculates matrix of individual utilities

Description

Function caPartUtilities calculates matrix of individual utilities for respondents. Function returns matrix of partial utilities (parameters of conjoint model regresion) for all artificial variables including parameters for reference levels for respondents (with intercept on first place).

Usage

caPartUtilities(y, x, z)

Arguments

y

matrix of preferences

x

matrix of profiles

z

vector of levels names

References

Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.

Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.

Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.

SPSS 6.1 Categories (1994), SPSS Inc., Chicago.

See Also

caUtilities, caTotalUtilities and ShowAllUtilities

Examples

Run this code
# NOT RUN {
#Example 1
library(conjoint)
data(tea)
uslall<-caPartUtilities(tprefm,tprof,tlevn)
print(uslall)

#Example 2
library(conjoint)
data(chocolate)
uslall<-caPartUtilities(cprefm,cprof,clevn)
print(head(uslall))

#Example 3
library(conjoint)
data(journey)
usl<-caPartUtilities(jpref[1,],jprof,jlevn)
print("Individual (partial) utilities for first respondent:")
print(usl)
# }

Run the code above in your browser using DataLab