#### One Factor data
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
## Exploratory methods
pointGraph(canine.data)
boxplot(canine.data)
descriptiveTable(canine.data)
## Fits and Comparisons
canine.fit <- fit(canine.data)
canine.comps0 <- comparisonsTable(canine.fit)
errorBarGraph(canine.fit)
canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
type="allgroupstocontrol", refgrp="CC")
comparisonsGraph(canine.comps1)
grpSummaryTable(canine.fit)
## Diagnostics
varianceGraph(canine.fit)
qqGraph(canine.fit)
downweightedTable(canine.fit, cutoff=0.95)
## Sample Size calculations
canine.samplesize <- samplesizeTable(canine.fit, direction="increasing",
mmdvec=c(10, 25, 50, 75, 100))
samplesizeGraph(canine.samplesize)
## Censored Data Set
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)
pointGraph(gmcsfcens.data)
boxplot(gmcsfcens.data)
descriptiveTable(gmcsfcens.data)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")
## Paired Samples
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
## Exploratory methods
descriptiveTable(anorexiaFT.data)
profileGraph(anorexiaFT.data)
diffGraph(anorexiaFT.data)
## Fits and Comparisons
anorexiaFT.fit <- fit(anorexiaFT.data)
comparisonsTable(anorexiaFT.fit)
Run the code above in your browser using DataLab