Learn R Programming

ProNet (version 1.0.0)

cluster: Network clustering

Description

Network clustering based on different methods.

Usage

cluster(graph, method = c("FN", "MCL", "LINKCOMM", "MCODE"), expansion = 2, inflation = 2, hcmethod = "average", directed = FALSE, outfile = NULL, plot = TRUE, layout = c("reingold.tilford", "circle", "random", "fruchterman.reingold", "sphere", "kamada.kawai", "lgl"), ...)

Arguments

graph
An igraph object.
method
Clustering method, possible values are FN, MCL, LINKCOMM and MCODE.
expansion
Numeric value > 1 for the expansion parameter, if method is MCL. See MCL for more information.
inflation
Numeric value > 0 for the inflation power coefficient, if method is MCL. See MCL for more information.
hcmethod
A character string naming the hierarchical clustering method to use. Default value is average. See linkcomm for more information.
directed
Logical value, indicating whether the network is directed (if TRUE) or not (if FLASE).
outfile
File to save the clustering result.
plot
Logical value, indicating whether to plot summary output (if TRUE) or not (if FLASE).
layout
Mode of the layout, possible values are fruchterman.reingold, reingold.tilford, random, circle, kamada.kawai, lgl and sphere. See igraph for more information.
...
Other arguments.

Value

A summary and visulization of the clustering.

References

A Clauset, MEJ Newman, C (2004) Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-mat/0408187.

van Dongen, S.M. (2000) Graph Clustering by Flow Simulation. Ph.D. thesis, Universtiy of Utrecht.

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27 (14), 2011-2012.

Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003 Jan 13;4(1):2.

See Also

mcode

Examples

Run this code
nlocal<-data.frame(c("DVL1","DVL2","DVL3"))
net<-construction(input=nlocal,db="HPRD",species="human",ID.type="Gene symbol",hierarchy=1)
cluster(net,method="MCODE",layout="fruchterman.reingold")
cluster(net,method="FN",layout="fruchterman.reingold")

Run the code above in your browser using DataLab