Learn R Programming

ProNet (version 1.0.0)

comp.rand.subnet: Comparing a sub network to the randomly simulated ones

Description

Comparing a sub network with randomly simulated ones from the whole network.

Usage

comp.rand.subnet(subgraph, graph, nsim = 1000, degree = FALSE, betweenness = FALSE, ave.path.len = FALSE, eccentricity = FALSE, cc = FALSE, method = "utest", FDR = 0.05)

Arguments

subgraph
An igraph object.
graph
An igraph object. The whole one for random simulation.
nsim
Times for simulation. Default value is 1000.
degree
Logical value, indicating whether to do vertex degree comparing (if TRUE) or not (if FALSE).
betweenness
Logical value, indicating whether to do betweenness comparing (if TRUE) or not (if FALSE).
ave.path.len
Logical value, indicating whether to do average path comparing (if TRUE) or not (if FALSE).
eccentricity
Logical value, indicating whether to do eccentricity comparing (if TRUE) or not (if FALSE).
cc
Logical value, indicating whether to do clustering coefficient comparing (if TRUE) or not (if FALSE).
method
Test method, currently only utest is supported.
FDR
False discovery rate. Default value is 0.05.

Value

A matrix of compared parameters and plots.

References

Y Benjamini, Y Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57, No. 1. (1995), pp. 289-300.

See Also

net.comparing, comp.subnet

Examples

Run this code
g<-barabasi.game(100,power=0.8,directed=FALSE)
	subg<-induced.subgraph(g,sample(1:100,30))
	comp.rand.subnet(subg,g)
comp.rand.subnet(subg,g,degree=TRUE)

Run the code above in your browser using DataLab